Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Regional long-term model of radioactivity dispersion and fate in the Northwestern Pacific and adjacent seas: application to the Fukushima Dai-ichi accident
Vise andre og tillknytning
2014 (engelsk)Inngår i: Journal of Environmental Radioactivity, ISSN 0265-931X, E-ISSN 1879-1700, Vol. 131, s. 4-18Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The compartment model POSEIDON-R was modified and applied to the Northwestern Pacific and adjacent seas to simulate the transport and fate of radioactivity in the period 1945-2010, and to perform a radiological assessment on the releases of radioactivity due to the Fukushima Dai-ichi accident for the period 2011-2040. The model predicts the dispersion of radioactivity in the water column and in sediments, the transfer of radionuclides throughout the marine food web, and subsequent doses to humans due to the consumption of marine products. A generic predictive dynamic food-chain model is used instead of the biological concentration factor (BCF) approach. The radionuclide uptake model for fish has as a central feature the accumulation of radionuclides in the target tissue. The three layer structure of the water column makes it possible to describe the vertical structure of radioactivity in deep waters. In total 175 compartments cover the Northwestern Pacific, the East China and Yellow Seas and the East/Japan Sea. The model was validated from Cs-137 data for the period 1945-2010. Calculated concentrations of Cs-137 in water, bottom sediments and marine organisms in the coastal compartment, before and after the accident, are in close agreement with measurements from the Japanese agencies. The agreement for water is achieved when an additional continuous flux of 3.6 TBq y(-1) is used for underground leakage of contaminated water from the Fukushima Dai-ichi NPP, during the three years following the accident. The dynamic food web model predicts that due to the delay of the transfer throughout the food web, the concentration of Cs-137 for piscivorous fishes returns to background level only in 2016. For the year 2011, the calculated individual dose rate for Fukushima Prefecture due to consumption of fishery products is 3.6 mu Sv y(-1). Following the Fukushima Dai-ichi accident the collective dose due to ingestion of marine products for Japan increased in 2011 by a factor of 6 in comparison with 2010. (C) 2013 Elsevier Ltd. All rights reserved.

sted, utgiver, år, opplag, sider
2014. Vol. 131, s. 4-18
Emneord [en]
Compartment modelling, Radionuclide transfer in marine biota, Human ingestion doses, Fukushima Dai-ichi accident
HSV kategori
Forskningsprogram
Miljö
Identifikatorer
URN: urn:nbn:se:smhi:diva-117DOI: 10.1016/j.jenvrad.2013.09.009ISI: 000334005200002PubMedID: 24120972OAI: oai:DiVA.org:smhi-117DiVA, id: diva2:802777
Tilgjengelig fra: 2015-04-13 Laget: 2015-03-26 Sist oppdatert: 2017-12-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Robertson, Lennart

Søk i DiVA

Av forfatter/redaktør
Robertson, Lennart
Av organisasjonen
I samme tidsskrift
Journal of Environmental Radioactivity

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 45 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7
|