Change search
Link to record
Permanent link

Direct link
BETA
German, Jonas
Publications (8 of 8) Show all publications
Losjö, K., Södling, J., Wern, L. & German, J. (2019). Uppföljning av de svenska riktlinjerna för bestämning av dimensionerande flöden för dammanläggningar.
Open this publication in new window or tab >>Uppföljning av de svenska riktlinjerna för bestämning av dimensionerande flöden för dammanläggningar
2019 (Swedish)Report (Other academic)
Abstract [sv]

De svenska riktlinjerna för bestämning av dimensionerande flöden (Klass I-flöden) för dammanläggningar publicerades första gången för snart 30 år sedan (Flödeskommittén, 1990). SMHI har på uppdrag av Svenska kraftnät undersökt om de parametrar som används för flödesbestämningarna har förändrats över tiden.

Riktlinjerna föreskriver att simuleringar med en hydrologisk modell ska användas för beräkningarna, och ett antal parametrar anges för dessa beräkningar. En uppdelning av Sverige i fem regioner gjordes och parametrarna avser

  • ett snötäcke med 30 års återkomsttid
  • en dimensionerande nederbördsekvens över 14 dygn och 1000 km2
  • korrektioner av denna nederbördssekvens med avseende på avrinningsområdets storlek
  • korrektioner av nederbördssekvensen med avseende på årstid
  • extrem vind

Dessutom framhålls tillämpningen i ett klimat i förändring i den senaste upplagan (Svensk Energi m.fl. 2015).

För att undersöka om de parametrar som används för flödesbestämningen har förändrats över tiden, och därmed behöver justeras, har analyser gjorts av huruvida det går att se någon trend i nederbörd, snötäcke och extrem vind sedan de första riktlinjerna skrevs.

Förutom detta har även analyser gjorts av de högsta årliga flöden som uppmätts vid vattenföringsstationer i Sverige för att undersöka om det finns någon trend i dessa data.

En första uppföljning gjordes för 10 år sedan (Berström, m.fl., 2008) och föreliggande rapport är en uppdatering med tillgång till längre mätserier både efter 2008 och bakåt i tiden.

Långa serier med mätdata från ett urval av SMHI:s klimatstationer och hydrologiska stationer har använts i analyserna och resultatet av uppföljningen sammanfattas nedan.

  • Utvärdering av den dimensionerande nederbördssekvensen har gjorts dels genom att analysera tillfällen med nederbörd större än 90 mm över 1000 km2 under såväl 24 timmar som två dygn för perioden från c:a 1930 till 2018, och dels av den totala nederbördssumman under en 14-dygnsperiod 1961-2018. Även den högsta stationsnederbörd som varje år uppmätts (punktnederbörd) har analyserats för perioden 1945-2018.
  • Ingen av dessa analyser uppvisar en trend över de analyserade perioderna. Detta står i kontrast mot det resultat som framkom i den uppföljningen 2008, då man konstaterade en trend mot ökande punktnederbörd för perioden 1961-2007.
  • För att undersöka om det finns anledning att justera arealkorrektionen av nederbördssekvensen har såväl den stationsvisa dygnsnederbörden som den ackumulerade 14-dygnsnederbörden över olika stora arealer analyserats. De årliga variationerna är likartade över tid och över landet, och ingen trend kan ses. Anpassningen av de nu analyserade värdena för den ackumulerade 14-dygns nederbörden över 100, 1000 respektive 10 000 km2 ger något olika resultat beroende på analysmetodik. Ingen av metoderna är identisk med den som användes när riktlinjerna togs fram. Ingen entydig avvikelse från riktlinjerna finns dock.
  • Årstidskorrektionen av nederbörden har utvärderats genom att dela upp 14- dygnsnederbörden respektive den observerade punktnederbörden större än 90 mm på de månader den inträffade, dels perioden 1961- 1990 och dels 1991-2018.Resultatet visar att säsongsfördelningen uppvisar ett liknande mönster för de bådaperioderna, och som, även åskådliggörs i Flödeskommittén, (1990), och således finns inget skäl till att justera årstidskorrektionen i riktlinjerna.
  • För utvärderingen av eventuella trender i snötäcket har analyser gjorts av medelvärdet av varje års största snödjup vid 42 klimatstationer. Variationerna är stora mellan år under hela den analyserade perioden i hela landet, och även ett flytande 10-årsmedelvärde varierar. Sett över hela perioden 1904/05–2017/18 kan dock ingen trend ses, och inte heller för perioden 1961-2018, utan endast variationer över kortare tid. Eftersomberäkningar av 30-årssnön förutsätter att ingen trend finns i tidsserien som används för den statistiska analysen, kvarstår rekommendationen i riktlinjerna att frekvensanalysen för snön ska göras för så lång period som data finns tillgängliga.
  • Analysen av varje års högsta dygnsmedelvärde på vattenföringen har gjorts för 69 oreglerade eller endast obetydligt reglerade vattenföringsstationer med långa tidsserier. Antalet stationer varierar för olika delar av landet, men analysresultatet visar inte på någon långsiktig trend i storleken av flödestopparna.
  • Den geostrofiska vinden, som är en slags idealiserad genomsnittlig vindhastighet beräknad från lufttrycksobservationer, har beräknats, uppdelat i nio områden fördelade över Sverige. Antalet tillfällen från och med 1940 med geostrofisk vind på minst 25 m/s uppvisar ingen långsiktigt trend som kan föranleda justeringar i kriterierna för beräkningen av vågor och seicher.
  • Analysen av förhållanden mellan Klass I-avrinningen och 100-årsflödet tyder på att kvoten ökar med minskande avrinningsområden. Här kan det finnas en anledning att följa utvecklingen vid nya beräkningar för att eventuellt kunna se något orsakssamband.

Slutsatsen är att inga förändringar av kriterierna i riktlinjerna för beräkning av dimen- sionerande flöden för dammanläggningar behöver göras i dagsläget. Likaså framkommer vikten av långa tidsserier som underlag för bedömning av trender.

Abstract [en]

Commissioned by Svenska kraftnät, the Swedish Meteorological and Hydrological Institute has carried out a follow-up study on the Swedish guidelines for determination of designs floods for dams. The main purpose was to investigate whether the Swedish meteorological and hydrological observation data show any signs of climatic change, which could affect the validity of the guidelines, formulated in 1990 (Flödeskommittén, 1990), later updated twice, in which the edition of 2015 (Svensk Energi et.al., 2015), emphasize the application also in a changing climate . The first follow-up study was performed in 2008 (Bergström m.fl., 2008), and the present study has used longer time series, both after 2008 and earlier than in the study of 2008.

The guidelines prescribe that the calculation of design flood should be carried out using a hydrological model, and the following parameters are decided to be used in the simulations:

  • a snow cover with a statistical return period of 30 years
  • a 14-day precipitation sequence over 1000 km2
  • corrections of this sequence regarding the area of the catchment
  • corrections of the sequence regarding elevation above sea level and month of the year
  • extreme wind speed

The present analyses have used long series of observation data from SMHI climatological and hydrological databases, mostly using the division of Sweden into five regions, described in the guidelines.

  • The analyses of the 14-day precipitation sequence has been made by analysing precipitation higher than 90 mm over 1000 km2 during 24 hours and 2 days during the period 1930-2018, as well as the 14-day precipitation sum 1961-2018. Also the highest point precipitation values have been analysed for the period 1945-2018.
  • It is not possible to find a trend in the data for neither of these analyses, in contrary to the findings in the previous follow-up, where an increase in the highest point precipitation was seen for the period 1961-2007.
  • Two adaptations of accumulated 14-day precipitation over three areas: 100, 100 and 10 000 km, to the areal correction curve in the guidelines show some discrepancies. However, the present analyses are made using another database than the basis of the original curve, and the results indicate that there is no immediate need for adjustment of the areal correction in the guidelines.
  • The distribution of high precipitation over the year has been studied, and it shows the same pattern as the monthly corrections of the sequence in the guidelines. The pattern is similar for the periods 1961-90 and 1991-2018.
  • The mean values of yearly largest snow cover have been analysed for the period 1904/05-2017/18. The results do not indicate any trend, only shorter time variations, neither for the whole period nor for the period 1961-2018. As the determination of snow cover with a return period of 30 years should be made using frequency analysis, the recommendations in the guidelines to use a long data period for the analyses are still valid.
  • An analysis of the daily highest flood peaks was made for data from 60 unregulated or very slightly regulated discharge stations. No long time trend that could reveal changes in flood risks can be seen in the results.
  • The geostrophic wind, an idealized average wind speed, computed from observations of air pressure, has been studied 1940-2017. For geostrophic wind of at least 25 m/s no signs of long term trend can be seen.
  • The analyses of the ratio between the design flood for flood design category I and the flood of a 100-year return period indicates increasing ratio with decreasing catchment area. This could

The overall conclusion of the study is that there is presently no need for adjusting the parameters in the guidelines. The importance of using long time series for trend analyses is revealed.

Publisher
p. 68
Series
Climatology, ISSN 1654-2258
National Category
Climate Research
Research subject
Climate
Identifiers
urn:nbn:se:smhi:diva-5432 (URN)
Available from: 2019-09-25 Created: 2019-09-25 Last updated: 2019-09-25Bibliographically approved
Eklund, A., Johnell, A., Tofeldt, L., Tengdelius Brunell, J., Andersson, M., Ivarsson, C.-L., . . . Andersson, E. (2017). Vattennivåer, tappningar, vattentemperaturer och is i Hjälmaren Beräkningar för dagens och framtidens klimatförhållanden.
Open this publication in new window or tab >>Vattennivåer, tappningar, vattentemperaturer och is i Hjälmaren Beräkningar för dagens och framtidens klimatförhållanden
Show others...
2017 (Swedish)Report (Other academic)
Abstract [sv]

Beräkningar har gjorts för hur vattennivåer, tappningar, vattentemperatur och is beräknas förändras i Hjälmaren fram till 2100 på grund av den globala uppvärmningen.De tydligaste förändringarna i Hjälmaren i ett framtida klimat väntas bli att:

  • Det blir vanligare med låga nivåer.
  • De allra högsta nivåerna (så kallad beräknad högsta nivå) väntas öka något.
  • Det blir högre vattentemperaturer.
  • Det blir kortare period med is

Vattennivån i Hjälmaren väntas förändras måttligt i framtida klimat. Den tydligaste förändringen är att det vänas bli vanligare med låga nivåer, främst under sommar och höst. Detta är en följd av att avdunstningen, både från växtligheten i Hjälmarens avrinningsområde och direkt från sjön, beräknas öka i framtiden. I dagens klimat är vattennivån lägre än 21, 6 m (vilket motsvarar Hjälmarens sänkningsgräns) under i genomsnitt en månad per år. I framtiden väntas nivån vara lägre än 21,6 m under ca 3,5 månader.

För de allra högsta nivåerna (beräknad högsta vattennivå) syns en ökning för det kraftigaste utsläppsscenariot (RCP8.5) medan förändringarna är små för scenariot med begränsade utsläpp av växthusgaser (RCP4.5).Vattentemperaturen i Hjälmaren väntas öka med cirka en halv grad till mitten av seklet och mellan 1 och 2,5 grader till slutet av seklet. Antal dagar per år med ytvattentemperaturer över 20 grader beräknas öka från dagens cirka sju veckor per år till cirka 9 veckor i mitten av seklet och upp till 12 veckor i slutet av seklet. I dagens klimat är Hjälmaren islagd varje vinter. I framtida klimat väntas isläggningen utebli vissa vintrar.

Abstract [en]

Calculations have been made for how the water release, water abstraction, water temperature and ice extent are expected to change in Lake Hjälmaren up to the year 2100 due to global warming.The most noticeable effects of the future climate on Lake Hjälmaren are expected to be:

  • More frequent low water levels
  • No change in the highest water levels (the calculated maximum water level)
  • An increase in water temperature
  • A shorter ice cover period.

The water level in Lake Hjälmaren is only expected to change by a small amount in the future climate. The most obvious change is that low water levels will be more frequent, especially during the summer and autumn. This is due to an expected increase in evaporation, both from vegetation in the lake’s catchment area and from the surface of the lake. Currently the water level is lower than 21.6 m for about one month per year onaverage. In the future the water level is expected to be lower than 21.6 m for about 3.5 months.For the highest water levels (calculated maximum water level) an increase is shown for the high emission scenario (RCP8.5) while changes are expected to be small for the scenario with limited emission of greenhouse gases (RCP4.5).The water temperature in Lake Hjälmaren is expected to increase by about half a degree by the middle of the century and by 1 to 2.5 degrees by the end of the century. The number of days per year where the surface water temperature exceeds 20 degrees is expected to increase from the current value of around 7 weeks per year to about 9 weeks per year by the middle of the century and up to 12 weeks per year by the end of the century. Currently Lake Hjälmaren is covered with ice every winter. In the future climate it is expected that there will be some winters without ice coverage. 

Publisher
p. 48
Series
Climatology, ISSN 1654-2258 ; 43
National Category
Climate Research
Research subject
Climate
Identifiers
urn:nbn:se:smhi:diva-4124 (URN)
Available from: 2017-08-02 Created: 2017-08-02 Last updated: 2017-08-02Bibliographically approved
Eklund, A., Tofeldt, L., Johnell, A., Andersson, M., Tengdelius Brunell, J., German, J., . . . Andersson, E. (2017). Vattennivåer, tappningar, vattentemperaturer och is i Vänern. Beräkningar för dagens och framtidens klimatförhållanden.
Open this publication in new window or tab >>Vattennivåer, tappningar, vattentemperaturer och is i Vänern. Beräkningar för dagens och framtidens klimatförhållanden
Show others...
2017 (Swedish)Report (Other academic)
Abstract [sv]

Beräkningar har gjorts för hur vattennivåer, tappningar, vattentemperatur och is beräknas förändras i Vänern fram till 2100 på grund av den globala uppvärmningen. De tydligaste förändringarna i Vänern och Göta älv i ett framtida klimat beräknas bli att:  Det blir vanligare med låga nivåer i Vänern.  Det blir vanligare med höga nivåer i Vänern.  Det blir vanligare med låga tappningar i Göta älv.  Det blir vanligare med höga tappningar i Göta älv.  Det blir högre vattentemperaturer.  Det blir kortare perioder med is. I denna rapport redovisas nya beräkningar för Vänerns nivåer som ersätter de tidigare beräkningarna från 2010 (Bergström m.fl. 2010).

Publisher
p. 76
Series
Climatology, ISSN 1654-2258 ; 44
National Category
Climate Research
Research subject
Climate
Identifiers
urn:nbn:se:smhi:diva-4420 (URN)
Available from: 2017-11-16 Created: 2017-11-16 Last updated: 2017-11-16Bibliographically approved
Eklund, A., Tofeldt, L., Tengdelius Brunell, J., Johnell, A., German, J., Sjökvist, E., . . . Andersson, E. (2017). Vattennivåer, tappningar, vattentemperaturer och is i Vättern Beräkningar för dagens och framtidens klimatförhållanden.
Open this publication in new window or tab >>Vattennivåer, tappningar, vattentemperaturer och is i Vättern Beräkningar för dagens och framtidens klimatförhållanden
Show others...
2017 (Swedish)Report (Other academic)
Abstract [sv]

Beräkningar har gjorts för hur vattennivåer, tappningar, vattentemperatur och is beräknas förändras i Vättern fram till 2100 på grund av den globala uppvärmningen.De tydligaste förändringarna i Vättern i ett framtida klimat väntas bli att:

  • Det blir vanligare med låga nivåer.
  • Det blir mindre vanligt med höga nivåer.
  • De allra högsta nivåerna (så kallad beräknad högsta vattennivå) väntas bli oförändrade.
  • Det blir högre vattentemperaturer.
  • Det blir kortare period med is.

I ett varmare klimat beräknas avdunstningen öka, både från växtligheten i Vätterns tillrinningssområde och direkt från sjöns yta. Det gör att vattennivån i Vättern väntas ligga på en lägre nivå i framtiden. Enligt beräkningarna väntas medelvattennivån i Vättern minska med ca en till två decimeter till slutet av seklet, med ungefär lika stor minskning under alla årstider.Antal dagar per år med nivåer under sänkningsgränsen 88,3 m väntas öka från dagens ca 1,5 månad till ca 3 månader i mitten av seklet och 4-6 månader i slutet av seklet. De allra högsta nivåerna, beräknad högsta vattennivå, beräknas vara oförändrade i framtiden.Vattentemperaturen i Vätterns ytvatten väntas öka med ca en grad till mitten av seklet och ca 1,5 till 3 grader till slutet av seklet. Bottenvattnets temperatur väntas inte förändras till mitten av seklet men öka med upp till en grad i slutet av seklet.Antal dagar per år med ytvattentemperaturer över 20 grader beräknas öka från dagens cirka en vecka per år till cirka två veckor i mitten av seklet och upp till 6 veckor i slutet av seklet. Antalet år då Vättern är islagd beräknas minska kraftigt till slutet av seklet.

Abstract [en]

Calculations have been made for how the water level, water release, water temperature and ice extent are expected to change in Lake Vättern up to the year 2100 due to global warming.The most noticeable effects of the future climate on Lake Vättern are expected to be:

  • More frequent low water levels
  • Less frequent high water levels
  • No change in the highest water levels (the calculated maximum water level)
  • An increase in water temperature
  • A shorter ice cover period.

With a warmer climate the evaporation is expected to increase, both from vegetation in the lake’s catchment area as well as directly from the surface of the lake. This means that the water level in Lake Vättern is expected to be lower in the future. Calculations show that the average water level in Lake Vättern is expected to drop by one to two decimetres by the end of the century, with about the same reduction for all seasons.The number of days per year where the water level is below 88.3 m is expected to increase from the present value of around 1.5 months to about 3 months by the middle of the century and 4-6 months by the end of the century. The highest levels, the calculated maximum water level, are expected to remain unchanged in the future.

Publisher
p. 31
Series
Climatology, ISSN 1654-2258 ; 42
National Category
Climate Research
Research subject
Climate
Identifiers
urn:nbn:se:smhi:diva-4125 (URN)
Available from: 2017-08-03 Created: 2017-08-03 Last updated: 2017-08-03Bibliographically approved
Olsson, J., Dahné, J., German, J., Westergren, B., von Scherling, M., Kjellson, L. & Olsson, A. (2011). En studie av framtida flödesbelastning på Stockholms huvudavloppssystem. SMHI
Open this publication in new window or tab >>En studie av framtida flödesbelastning på Stockholms huvudavloppssystem
Show others...
2011 (Swedish)Report (Other academic)
Abstract [sv]

Denna studie utfördes inom SWEdish research programme on Climate, Impacts and Adaptation (SWECIA), finansierat av Stiftelsen för Miljöstratgisk Forskning (MISTRA), med delfinansiering från Stockholm Vatten AB.Studiens syfte var att bedöma flödesbelastningen på Stockholms huvudavloppssystem under resten av detta sekel mot bakgrund av både klimatförändring och befolkningsökning. Som underlag gjordes flödes-simuleringar med MIKE Urban. Referenssimuleringar för dagens klimat gjordes dels för ett representativt helår (1984), dels för c:a 200 utvalda regnhändelser mellan 1983 och 2007. I framtidssimuleringar beskrevs klimateffekten genom omskalning av indata (temperatur, nederbörd, avdunstning) i enlighet med klimatmodellscenarier och befolknings-effekten genom en ökning i enlighet med officiell bedömning.Resultaten indikerar framför allt att bräddade volymer till Mälaren och Saltsjön kommer att öka kraftigt, men även ett ökat inflöde till reningsverket, och därmed ökat behov av rening, samt en ökad översvämningsrisk.

Abstract [en]

This study was performed within the SWEdish research programme on Climate, Impacts and Adaptation (SWECIA), funded by the Foundation for Strategic Environmental Research (MISTRA), with additional funding from Stockholm Vatten AB. The aim of the study was to assess the discharge load on Stockholm's main sewer system during the rest of this century in light of both climate change and population increase. For this assessment, flow simulations with MIKE Urban were performed. Reference simulations for today's climate were done both for a representative year (1984) and for some 200 selected rainfall events between 1983 and 2007. In future simulations the climate effect was taken into account by rescaling input data (temperature, precipitation, evaporation) in line with climate model scenarios and the population effect by an increase in line with official estimations. The results indicate in particular that the spill volumes to Lake Mälaren and Saltsjön will increase substantially, but also an increased inflow to the treatment plant, and thus an increased need for treatment, and an increased flood risk.

Place, publisher, year, edition, pages
SMHI, 2011. p. 96
Series
Climatology, ISSN 1654-2258 ; 3
Keywords
Climate change, population increase, Stockholm sewer system, discharge, spill, flooding
Identifiers
urn:nbn:se:smhi:diva-2231 (URN)Klimat, Rapporter, Serie Klimatologi (Local ID)Klimat, Rapporter, Serie Klimatologi (Archive number)Klimat, Rapporter, Serie Klimatologi (OAI)
Available from: 2011-02-08 Created: 2016-07-08 Last updated: 2016-07-08Bibliographically approved
Karlsson, K., German, J. & Viklander, M. (2010). Stormwater Pond Sediments: Temporal Trends in Heavy Metal Concentrations and Sediment Removal. Soil & sediment contamination, 19(2), 217-230
Open this publication in new window or tab >>Stormwater Pond Sediments: Temporal Trends in Heavy Metal Concentrations and Sediment Removal
2010 (English)In: Soil & sediment contamination, ISSN 1532-0383, E-ISSN 1549-7887, Vol. 19, no 2, p. 217-230Article in journal (Refereed) Published
Abstract [en]

Temporal trends in stormwater pond sediment quality were evaluated by conducting field sediment surveys in 1998 and 2006. A sediment removal process in 2006 was also assessed. Results show that, for both years, the sediment closest to the inlet had the lowest concentrations of metals. The results from 1998 showed no significant differences in sediment heavy metal concentrations depth while the results from 2006 showed a decreasing trend with depth. A significant difference between the two years could be seen for Cr, Cu, and Pb. The water phase in the pond showed a difference before and after the removal of sediment. The water samples after emptying showed higher concentrations of metals as a result of disturbing and re-suspending the bottom sediment. No significant difference could be found in the samples taken from the bottom sediment before the removal of the sediment and from the sediment pile formed during the removal process. The total heavy metal concentration in water exceeded the threshold limits for the selected quality guidelines and, according to soil quality guidelines, the sediment would be classified moderately serious to serious.

Keywords
heavy metals, retention pond, sediment removal, urban drainage
National Category
Oceanography, Hydrology and Water Resources
Research subject
Hydrology
Identifiers
urn:nbn:se:smhi:diva-594 (URN)10.1080/15320380903548490 (DOI)000276430500007 ()
Available from: 2015-04-20 Created: 2015-04-20 Last updated: 2018-01-11Bibliographically approved
Berglöv, G., German, J., Gustavsson, H., Harbman, U. & Johansson, B. (2009). Improvement HBV model Rhine in FEWS: Final report. SMHI
Open this publication in new window or tab >>Improvement HBV model Rhine in FEWS: Final report
Show others...
2009 (English)Report (Other academic)
Abstract [en]

Between 1997 and 2004, the German Federal Institute of Hydrology (BfG), in cooperation with the Dutch Rijkswaterstaat Waterdienst, set up and calibrated the HBV rainfall-runoff model for the river Rhine. The model performed well for its original purpose, but less well when it was incorporated in the forecasting system FEWS in 2005. The main reason for the deteriorating performance was that the precipitation, temperature and evaporation data available for real-time applications differed from the ones used for the calibration. Another problem was that the accuracy in the low flow simulations was considered inadequate for navigation forecasts. It was thus decided that the HBV model set-up for Rhine should be updated and expanded in its functionalities primarily for use in operational forecasting. The tasks given to SMHI were:· To evaluate the evaporation calculations in HBV and recommend the best one to be used in the forecasting application.· To recalibrate the model using operationally available input data and with the aim to adequately model the whole range of flows.· To activate the HBV routine for updating model state variables before a forecast (PT updating)A new precipitation and temperature data set was provided for the calibration. This data set is consistent with the data to be used in the forecasting application, but improved as compared to the first data set used in the FEWS-DE system. To improve low flow simulations, a new model option, the contributing area approach, was used. The model was recalibrated using an automatic routine. Some minor manual parameter adjustments were made in a few sub-catchments, mainly to correct for anthropogenic influences and backwater effects on discharge measurements. The calibration was done locally for some 95 sub catchments, and verified both locally and for the total river flow.The overall model performance after recalibration with the new input data was at least as good as for the original calibration. Low flow recession and variations were reproduced to a greater degree. An evaluation with the old parameters and the new input data showed that the new data set in itself was not enough for satisfactory model performance. The recalibration was necessary. PT updating was shown to improve the forecast accuracy both for low/intermediate flows and for high flows. The effect diminishes with forecast lead time, but still remains at least up to the fifth day.

Place, publisher, year, edition, pages
SMHI, 2009. p. 66
Series
Hydrology, ISSN 0283-7722 ; 112
Identifiers
urn:nbn:se:smhi:diva-2789 (URN)Hydrologi, Rapporter, Serie Hydrologi (Local ID)Hydrologi, Rapporter, Serie Hydrologi (Archive number)Hydrologi, Rapporter, Serie Hydrologi (OAI)
Available from: 2009-09-23 Created: 2016-07-08 Last updated: 2016-07-08Bibliographically approved
Wern, L. & German, J. (2009). Korttidsnederbörd i Sverige 1995 - 2008. SMHI
Open this publication in new window or tab >>Korttidsnederbörd i Sverige 1995 - 2008
2009 (Swedish)Report (Other academic)
Abstract [sv]

Korta men intensiva regnhändelser är mycket viktiga inom bland annat urban hydrologi då vi här har att göra med snabba förlopp där avrinningen sker från små ytor som till stor del är hårdgjorda. Nederbördsserier med hög upplösning har därför mycket stor betydelse för all planering, analys och dimensionering av dagvattensystem, oavsett om det är frågan om rörnät eller öppna diken. Regn med varaktighet 15 min till 96 timmar har studerats genom att analysera nederbördsdata från SMHIs nät av automatiska väderstationer.Dessa stationer började installeras under våren 1995 och från början av 1996 var de flesta stationer igång. Den period vi har studerat är maj 1995 till september 2008. 114 automatstationerna har registrerat nederbörd under någon del av denna period. Sammanlagt finns 1211 stationsår med 15 minuters nederbörd. Data har granskats och ett mindre antal orimliga observationer har tagits bort eller rättats. Sammanställningar av årets största regn med olika varaktigheter har gjorts. Nederbördsmängder med olika varaktighet från 15 min till 96 timmar för olika återkomsttider har beräknats med extremvärdesanalys.Den studerade perioden är för kort och antalet stationer är för få för att bestämma regionala skillnader i Sverige av korttidsnederbörd. Därför har medelvärden av korttidsnederbörd för hela Sverige beräknats. Resultat har jämförts med tidigare studier av Dahlström (2006) och Hernebring (2006). Överensstämmelsen är god för kortare regn och kortare återkomsttider.

Place, publisher, year, edition, pages
SMHI, 2009. p. 28
Series
Meteorology, ISSN 0283-7730 ; 139
Identifiers
urn:nbn:se:smhi:diva-2217 (URN)Meteorologi, Rapporter, Serie Meteorologi (Local ID)Meteorologi, Rapporter, Serie Meteorologi (Archive number)Meteorologi, Rapporter, Serie Meteorologi (OAI)
Available from: 2009-03-05 Created: 2016-07-08 Last updated: 2016-07-08Bibliographically approved
Organisations

Search in DiVA

Show all publications
v. 2.35.8
|