Change search
Link to record
Permanent link

Direct link
Bärring, Lars
Publications (10 of 55) Show all publications
Bärring, L. (2024). Climate and Forecast Conventions version 1.12.
Open this publication in new window or tab >>Climate and Forecast Conventions version 1.12
2024 (English)Other (Refereed)
Abstract [en]

This document describes the CF conventions for climate and forecast metadata designed to promotethe processing and sharing of files created with the netCDF Application Programmer Interface[NetCDF]. The conventions define metadata that provide a definitive description of what the data ineach variable represents, and of the spatial and temporal properties of the data. This enables usersof data from different sources to decide which quantities are comparable, and facilitates buildingapplications with powerful extraction, regridding, and display capabilities.The CF conventions generalize and extend the COARDS conventions [COARDS]. The extensionsinclude metadata that provides a precise definition of each variable via specification of a standardname, describes the vertical locations corresponding to dimensionless vertical coordinate values,and provides the spatial coordinates of non-rectilinear gridded data. Since climate and forecastdata are often not simply representative of points in space/time, other extensions provide for thedescription of coordinate intervals, multidimensional cells and climatological time coordinates, andindicate how a data value is representative of an interval or cell. This standard also relaxes theCOARDS constraints on dimension order and specifies methods for reducing the size of datasets.

Publisher
p. 282
National Category
Climate Research
Research subject
Climate; Environment; Meteorology; Hydrology; Oceanography; Remote sensing
Identifiers
urn:nbn:se:smhi:diva-6696 (URN)
Available from: 2024-12-17 Created: 2024-12-17 Last updated: 2024-12-17Bibliographically approved
Bärring, L. (Ed.). (2024). Proceedings of the 2024 CF Workshop: 17-20 September 2024, Norrköping, Sweden. Paper presented at CF Community Workshop 2024.
Open this publication in new window or tab >>Proceedings of the 2024 CF Workshop: 17-20 September 2024, Norrköping, Sweden
2024 (English)Conference proceedings (editor) (Other academic)
Abstract [en]

This document describes the CF conventions for climate and forecast metadata designed to promote the processing and sharing of files created with the netCDF Application Programmer Interface. The conventions define metadata that provide a definitive description of what the data in each variable represents, and of the spatial and temporal properties of the data. This enables users of data from different sources to decide which quantities are comparable, and facilitates building applications with powerful extraction, regridding, and display capabilities.

The CF conventions generalize and extend the COARDS conventions. The extensions include metadata that provides a precise definition of each variable via specification of a standard name, describes the vertical locations corresponding to dimensionless vertical coordinate values, and provides the spatial coordinates of non-rectilinear gridded data. Since climate and forecast data are often not simply representative of points in space/time, other extensions provide for the description of coordinate intervals, multidimensional cells and climatological time coordinates, and indicate how a data value is representative of an interval or cell. This standard also relaxes the COARDS constraints on dimension order and specifies methods for reducing the size of datasets.

Publisher
p. 9
National Category
Climate Research
Research subject
Climate; Environment; Meteorology; Hydrology; Oceanography; Remote sensing
Identifiers
urn:nbn:se:smhi:diva-6695 (URN)
Conference
CF Community Workshop 2024
Available from: 2024-12-17 Created: 2024-12-17 Last updated: 2024-12-17Bibliographically approved
Berg, P., Bosshard, T., Bozhinova, D., Bärring, L., Löw, J., Nilsson, C., . . . Yang, W. (2024). Robust handling of extremes in quantile mapping - "Murder your darlings". Geoscientific Model Development, 17(22), 8173-8179
Open this publication in new window or tab >>Robust handling of extremes in quantile mapping - "Murder your darlings"
Show others...
2024 (English)In: Geoscientific Model Development, ISSN 1991-959X, E-ISSN 1991-9603, Vol. 17, no 22, p. 8173-8179Article in journal (Refereed) Published
National Category
Climate Research
Research subject
Hydrology; Climate
Identifiers
urn:nbn:se:smhi:diva-6687 (URN)10.5194/gmd-17-8173-2024 (DOI)001357779300001 ()
Available from: 2024-11-26 Created: 2024-11-26 Last updated: 2024-11-26Bibliographically approved
Bärring, L. & Raspaud, M. (2023). NetCDF Climate and Forecast (CF) Metadata Conventions.
Open this publication in new window or tab >>NetCDF Climate and Forecast (CF) Metadata Conventions
2023 (English)Report (Refereed)
Abstract [en]

This document describes the CF conventions for climate and forecast metadata designed to promotethe processing and sharing of files created with the netCDF Application Programmer Interface[NetCDF]. The conventions define metadata that provide a definitive description of what the data ineach variable represents, and of the spatial and temporal properties of the data. This enables usersof data from different sources to decide which quantities are comparable, and facilitates buildingapplications with powerful extraction, regridding, and display capabilities.The CF conventions generalize and extend the COARDS conventions [COARDS]. The extensionsinclude metadata that provides a precise definition of each variable via specification of a standardname, describes the vertical locations corresponding to dimensionless vertical coordinate values,and provides the spatial coordinates of non-rectilinear gridded data. Since climate and forecastdata are often not simply representative of points in space/time, other extensions provide for thedescription of coordinate intervals, multidimensional cells and climatological time coordinates, andindicate how a data value is representative of an interval or cell. This standard also relaxes theCOARDS constraints on dimension order and specifies methods for reducing the size of datasets.

Publisher
p. 1
National Category
Earth and Related Environmental Sciences
Research subject
Hydrology; Meteorology; Oceanography; Climate; Environment; Remote sensing
Identifiers
urn:nbn:se:smhi:diva-6688 (URN)
Available from: 2024-11-26 Created: 2024-11-26 Last updated: 2024-11-26Bibliographically approved
Ivanov, O. L., Bärring, L. & Wilcke, R. (2022). Climate change impact on snow loads in northern Europe. Structural Safety, 97, Article ID 102231.
Open this publication in new window or tab >>Climate change impact on snow loads in northern Europe
2022 (English)In: Structural Safety, ISSN 0167-4730, E-ISSN 1879-3355, Vol. 97, article id 102231Article in journal (Refereed) Published
National Category
Climate Research
Research subject
Climate; Meteorology
Identifiers
urn:nbn:se:smhi:diva-6279 (URN)10.1016/j.strusafe.2022.102231 (DOI)000805076600001 ()
Available from: 2022-06-21 Created: 2022-06-21 Last updated: 2022-06-21Bibliographically approved
Andersson, S., Bärring, L., Landelius, T., Samuelsson, P. & Schimanke, S. (2021). SMHI Gridded Climatology.
Open this publication in new window or tab >>SMHI Gridded Climatology
Show others...
2021 (English)Report (Other academic)
Abstract [en]

A gridded dataset (SMHI Gridded Climatology - SMHIGridClim) has been produced forthe years 1961 - 2018 over an area covering the Nordic countries on a grid with 2.5 kmhorizontal resolution. The variables considered are the two meter temperature and twometer relative humidity on 1, 3 or 6 hour resolution, varying over the time periodcovered, the daily minimum and maximum temperatures, the daily precipitation and thedaily snow depth. The gridding was done using optimal interpolation with the gridppopen source software from the Norwegian Meteorological Institute.Observations for the analysis are provided by the Swedish, Finish and Norwegianmeteorological institutes, and the ECMWF. The ECA&D observation data set (e.g. usedfor the gridded E-OBS dataset) was considered for inclusion but was left out because ofcomplications with time stamps and accumulation periods varying between countries andperiods. Quality check of the observations was performed using the open source softwareTITAN, also developed at the Norwegian Meteorological Institute.The first guess to the optimal interpolation was given by statistically downscaledforecasts from the UERRA-HARMONIE reanalysis at 11 km horizontal resolution. Thedownscaling was done to fit the output from the operational MEPS NWP system at 2.5km with a daily and yearly variation in the downscaling parameters.The quality of the SMHIGridClim dataset, in terms of annual mean RMSE, was shown tobe similar to that of gridded datasets covering the other Nordic countries; “seNorge”from Norway and the dataset “FMI_ClimGrid” from Finland.

Abstract [sv]

Ett klimatologiskt griddat datasett (SMHI Gridded Climatology - SMHIGridClim) hartagits fram för åren 1961 – 2018. Data täcker de nordiska länderna med en horisontellupplösning av 2,5 km. Variablerna som tagits fram är lufttemperatur och relativluftfuktighet vid 2m höjd med en upplösning av1,3 eller 6 timmar beroende av tidsperiod,samt dygnsupplöst min- och maxtemperatur, nederbörd och snödjup. Datasetet ärframtaget med optimal interpolation av stationsdata genom analysverktyget gridpp, somär en öppet tillgänglig programvara från Norska Meteorologiska Institutet.Observationer till analysen har erhållits från de svenska, norska och finskameteorologiska instituten, samt ECMWF. En ansats gjordes också att användaobservationer från datasetet ECA&D från KNMI, men på grund av svårigheter med atttidsstämplarna för data från olika länder inte överensstämde, uteslöts datasetet uranalysen. Kvalitetskontroll av observationerna gjordes med programvaran TITAN, somäven den finns tillgänglig från och utvecklats av Norska Meteorologiska Institutet.Som en första gissning till interpolationen användes statistiskt nerskalade prognosfält(från 11 km till 2,5 km upplösning) från UERRA-HARMONIE. Nerskalningen gjordesmot fält från den operationella numeriska väderprognosmodellen MEPS. Anpassningengjordes med nedskalningsparametrar som varierar över året och dygnet.Kvalitén hos ”SMHIGridClim med avseende på genomsnittligt RMSE är liknande densom tagits fram för griddade data för andra nordiska länderna med varierandeanalysmetoder; “seNorge” från Norge och “FMI_ClimGrid” från Finland.

Series
RMK: Report Meteorology and Climatology, ISSN 0347-2116 ; 118
National Category
Climate Research
Research subject
Climate
Identifiers
urn:nbn:se:smhi:diva-6192 (URN)
Available from: 2021-11-22 Created: 2021-11-22 Last updated: 2021-11-22Bibliographically approved
Koenigk, T., Bärring, L., Matei, D., Nikulin, G., Strandberg, G., Tyrlis, E., . . . Wilcke, R. (2020). On the contribution of internal climate variability to European future climate trends. Tellus. Series A, Dynamic meteorology and oceanography, 72(1)
Open this publication in new window or tab >>On the contribution of internal climate variability to European future climate trends
Show others...
2020 (English)In: Tellus. Series A, Dynamic meteorology and oceanography, ISSN 0280-6495, E-ISSN 1600-0870, Vol. 72, no 1Article in journal (Refereed) Published
National Category
Climate Research
Research subject
Climate
Identifiers
urn:nbn:se:smhi:diva-6004 (URN)10.1080/16000870.2020.1788901 (DOI)000579738800001 ()
Available from: 2020-11-17 Created: 2020-11-17 Last updated: 2020-11-17Bibliographically approved
Chen, D., Rodhe, H., Emanuel, K., Seneviratne, S. I., Zhai, P., Allard, B., . . . Zhang, Q. (2020). Summary of a workshop on extreme weather events in a warming world organized by the Royal Swedish Academy of Sciences. Tellus. Series B, Chemical and physical meteorology, 72(1), Article ID 1794236.
Open this publication in new window or tab >>Summary of a workshop on extreme weather events in a warming world organized by the Royal Swedish Academy of Sciences
Show others...
2020 (English)In: Tellus. Series B, Chemical and physical meteorology, ISSN 0280-6509, E-ISSN 1600-0889, Vol. 72, no 1, article id 1794236Article in journal (Refereed) Published
National Category
Climate Research
Research subject
Climate
Identifiers
urn:nbn:se:smhi:diva-5752 (URN)10.1080/16000889.2020.1794236 (DOI)000550013500001 ()
Available from: 2020-08-18 Created: 2020-08-18 Last updated: 2020-08-18Bibliographically approved
Belusic, D., Berg, P., Bozhinova, D., Bärring, L., Doescher, R., Eronn, A., . . . Strandberg, G. (2019). Climate Extremes for Sweden.
Open this publication in new window or tab >>Climate Extremes for Sweden
Show others...
2019 (English)Report (Other academic)
Publisher
p. 75
National Category
Climate Research
Research subject
Climate
Identifiers
urn:nbn:se:smhi:diva-5461 (URN)10.17200/Climate_Extremes_Sweden (DOI)
Projects
Klimatextremer för Sverige: kunskapsläget och betydelse för anpassning och mitigation
Funder
Swedish Research Council Formas, 516729
Available from: 2019-11-06 Created: 2019-11-06 Last updated: 2020-05-04Bibliographically approved
Bärring, L. & Strandberg, G. (2018). Does the projected pathway to global warming targets matter?. Environmental Research Letters, 13(2), Article ID 024029.
Open this publication in new window or tab >>Does the projected pathway to global warming targets matter?
2018 (English)In: Environmental Research Letters, E-ISSN 1748-9326, Vol. 13, no 2, article id 024029Article in journal (Refereed) Published
National Category
Climate Research
Research subject
Climate
Identifiers
urn:nbn:se:smhi:diva-4519 (URN)10.1088/1748-9326/aa9f72 (DOI)000425339600001 ()
Available from: 2018-03-06 Created: 2018-03-06 Last updated: 2024-01-17Bibliographically approved
Organisations

Search in DiVA

Show all publications