Change search
Link to record
Permanent link

Direct link
Publications (10 of 44) Show all publications
Koelemeijer, I. A., Ehrlen, J., De Frenne, P., Joensson, M., Berg, P. & Hylander, K. (2023). Forest edge effects on moss growth are amplified by drought. Ecological Applications
Open this publication in new window or tab >>Forest edge effects on moss growth are amplified by drought
Show others...
2023 (English)In: Ecological Applications, ISSN 1051-0761, E-ISSN 1939-5582Article in journal (Refereed) Published
National Category
Oceanography, Hydrology and Water Resources
Research subject
Hydrology
Identifiers
urn:nbn:se:smhi:diva-6434 (URN)10.1002/eap.2851 (DOI)000962260900001 ()36938961 (PubMedID)
Available from: 2023-04-25 Created: 2023-04-25 Last updated: 2023-04-25Bibliographically approved
Loarca, A. L., Berg, P., Baquerizo, A. & Besio, G. (2023). On the role of wave climate temporal variability in bias correction of GCM-RCM wave simulations. Climate Dynamics
Open this publication in new window or tab >>On the role of wave climate temporal variability in bias correction of GCM-RCM wave simulations
2023 (English)In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894Article in journal (Refereed) Published
National Category
Oceanography, Hydrology and Water Resources
Research subject
Hydrology
Identifiers
urn:nbn:se:smhi:diva-6428 (URN)10.1007/s00382-023-06756-0 (DOI)000956388300001 ()
Available from: 2023-04-19 Created: 2023-04-19 Last updated: 2023-04-19Bibliographically approved
Koelemeijer, I. A., Ehrlen, J., Jonsson, M., De Frenne, P., Berg, P., Andersson, J., . . . Hylander, K. (2022). Interactive effects of drought and edge exposure on old-growth forest understory species. Landscape Ecology
Open this publication in new window or tab >>Interactive effects of drought and edge exposure on old-growth forest understory species
Show others...
2022 (English)In: Landscape Ecology, ISSN 0921-2973, E-ISSN 1572-9761Article in journal (Refereed) Published
National Category
Oceanography, Hydrology and Water Resources
Research subject
Hydrology
Identifiers
urn:nbn:se:smhi:diva-6272 (URN)10.1007/s10980-022-01441-9 (DOI)000797743600001 ()
Available from: 2022-05-31 Created: 2022-05-31 Last updated: 2022-05-31Bibliographically approved
Kjellström, E., Andersson, L., Arneborg, L., Berg, P., Capell, R., Fredriksson, S., . . . Strandberg, G. (2022). Klimatinformation som stöd för samhällets klimatanpassningsarbete.
Open this publication in new window or tab >>Klimatinformation som stöd för samhällets klimatanpassningsarbete
Show others...
2022 (Swedish)Report (Other academic)
Abstract [sv]

Det naturvetenskapliga kunskapsläget kring klimatförändringen blir allt starkare vilket till exempel har rapporterats i rapporten Klimat i förändring 2021 – Den naturvetenskapliga grunden från FN:s klimatpanel, IPCC, 2021. Den globala medeltemperaturen har höjts med mer än 1,1 grader sen andra halvan av 1800-talet. Detta beror i huvudsak på människans utsläpp av koldioxid till atmosfären. Fortsatta utsläpp kommer att leda till ännu större temperaturökning framöver. Exakt hur stora de framtida förändringarna av klimatet kan bli är inte känt eftersom det beror på hur stora de framtida koldioxidutsläppen blir, och eftersom det finns osäkerheter kring exakt hur mycket en ökning av koldioxidhalten påverkar klimatet. Trots detta är det klart att det förutom högre temperaturer för alla jordens regioner också kommer leda till förändringar i nederbördsförhållanden och olika typer av väderextremer. Utbredning av snö och is beräknas minska och den globala havsnivån fortsätta stiga. Dessa typer av förändringar förväntas få en lång rad konsekvenser både för samhälle och naturmiljö.Den här rapporten tar upp vilken klimatinformation som finns tillgänglig för det svenska samhällets klimatanpassningsarbete, hur informationen kan användas, vilka begränsningar den har och vad som kan förbättras. Fortsatt utveckling av metodik och modeller är en viktig komponent för att kunna ta fram och förbättra klimatinformation för klimatanpassningsarbetet liksom vikten av att säkerställa långa tidsserier för att spegla klimatets variabilitet och förändring. Stora ensembler av högupplösta klimatscenarier behövs för att kunna analysera, förstå och beskriva framtida klimatförändring under olika utsläppsscenarier. Detta gäller särskilt för att kunna göra sannolikhetsberäkningar av extrema väderhändelser, vilket är en central del i den riskanalys som behövs för att kunna anpassa samhället till både dagens klimat och det klimat vi kan få i framtiden. Rapporten pekar på betydelsen av långsiktighet i arbetet med produktion av klimatdata, samt att det är viktigt att arbeta med hela kedjan från observationer och modeller till användare.

Abstract [en]

The scientific basis related to climate change grows stronger, for example as reported by the latest report by the first working group of the IPCC in 2021. Primarily as a result of human emissions of carbon dioxide to the atmosphere, the global mean temperature has increased by more than 1.1 degrees since the second half of the 19th century. Continued emissions will lead to even larger increases in the future. Exactly how strong is unknown as the size of future emissions is not known and as there is an uncertainty related to the climate sensitivity. Despite this, it is clear that, in addition to higher temperatures in all areas, also precipitation will change as will different types of extreme conditions. The extent of snow and ice will decline and global sea level continue to rise. Such changes are expected to lead to various consequences both for society and the environment.The report presents what types of climate information that are available for work on climate change adaptation, how the information can be used, what limitations it has and what can be improved. Continued development of methods and models is one key component to be able to produce and improve climate information supporting climate change adaptation. Another relates to ensuring the existence of long time series reflecting variability and change. Large ensembles of high-resolution climate scenarios are needed to analyse, understand and describe future climate change under different scenarios. This is especially important for calculating probabilities of extreme weather events, which is a key component of the risk analysis. The report points to the importance of a longterm approach in the work with producing climate change information, and that it is important to involve the whole chain from observations and models to users of the information.

Publisher
p. 85
Series
Climatology, ISSN 1654-2258 ; 64
National Category
Climate Research
Research subject
Climate
Identifiers
urn:nbn:se:smhi:diva-6228 (URN)
Available from: 2022-02-08 Created: 2022-02-08 Last updated: 2022-02-08Bibliographically approved
Berg, P., Bosshard, T., Yang, W. & Zimmermann, K. (2022). MIdASv0.2.1-MultI-scale bias AdjuStment. Geoscientific Model Development, 15(15), 6165-6180
Open this publication in new window or tab >>MIdASv0.2.1-MultI-scale bias AdjuStment
2022 (English)In: Geoscientific Model Development, ISSN 1991-959X, E-ISSN 1991-9603, Vol. 15, no 15, p. 6165-6180Article in journal (Refereed) Published
National Category
Climate Research
Research subject
Climate; Climate
Identifiers
urn:nbn:se:smhi:diva-6326 (URN)10.5194/gmd-15-6165-2022 (DOI)000836325300001 ()
Available from: 2022-09-06 Created: 2022-09-06 Last updated: 2022-09-06
Sebok, E., Henriksen, H. J., Pasten-Zapata, E., Berg, P., Thirel, G., Lemoine, A., . . . Refsgaard, J. C. (2022). Use of expert elicitation to assign weights to climate and hydrological models in climate impact studies. Hydrology and Earth System Sciences, 26(21), 5605-5625
Open this publication in new window or tab >>Use of expert elicitation to assign weights to climate and hydrological models in climate impact studies
Show others...
2022 (English)In: Hydrology and Earth System Sciences, ISSN 1027-5606, E-ISSN 1607-7938, Vol. 26, no 21, p. 5605-5625Article in journal (Refereed) Published
National Category
Oceanography, Hydrology and Water Resources
Research subject
Hydrology
Identifiers
urn:nbn:se:smhi:diva-6367 (URN)10.5194/hess-26-5605-2022 (DOI)000880202500001 ()
Available from: 2022-11-30 Created: 2022-11-30 Last updated: 2022-11-30Bibliographically approved
Fowler, H. J., Lenderink, G., Prein, A. F., Westra, S., Allan, R. P., Ban, N., . . . Zhang, X. (2021). Anthropogenic intensification of short-duration rainfall extremes. Nature Reviews Earth & Environment, 2(2), 107-122
Open this publication in new window or tab >>Anthropogenic intensification of short-duration rainfall extremes
Show others...
2021 (English)In: Nature Reviews Earth & Environment, E-ISSN 2662-138X, Vol. 2, no 2, p. 107-122Article in journal (Refereed) Published
Abstract [en]

Short-duration (1-3 h) rainfall extremes can cause serious damage to societies through rapidly developing (flash) flooding and are determined by complex, multifaceted processes that are altering as Earth's climate warms. In this Review, we examine evidence from observational, theoretical and modelling studies for the intensification of these rainfall extremes, the drivers and the impact on flash flooding. Both short-duration and long-duration (>1day) rainfall extremes are intensifying with warming at a rate consistent with the increase in atmospheric moisture (similar to 7%K-1), while in some regions, increases in short-duration extreme rainfall intensities are stronger than expected from moisture increases alone. These stronger local increases are related to feedbacks in convective clouds, but their exact role is uncertain because of the very small scales involved. Future extreme rainfall intensification is also modulated by changes to temperature stratification and large-scale atmospheric circulation. The latter remains a major source of uncertainty. Intensification of short-duration extremes has likely increased the incidence of flash flooding at local scales, and this can further compound with an increase in storm spatial footprint to considerably increase total event rainfall. These findings call for urgent climate change adaptation measures to manage increasing flood risks.

National Category
Oceanography, Hydrology and Water Resources
Research subject
Hydrology
Identifiers
urn:nbn:se:smhi:diva-6131 (URN)10.1038/s43017-020-00128-6 (DOI)000671874300006 ()
Available from: 2021-08-03 Created: 2021-08-03 Last updated: 2022-04-29Bibliographically approved
Lucas-Picher, P., Argueso, D., Brisson, E., Tramblay, Y., Berg, P., Lemonsu, A., . . . Caillaud, C. (2021). Convection-permitting modeling with regional climate models: Latest developments and next steps. Wiley Interdisciplinary Reviews: Climate Change, Article ID e731.
Open this publication in new window or tab >>Convection-permitting modeling with regional climate models: Latest developments and next steps
Show others...
2021 (English)In: Wiley Interdisciplinary Reviews: Climate Change, ISSN 1757-7780, E-ISSN 1757-7799, article id e731Article in journal (Refereed) Published
Abstract [en]

Approximately 10 years ago, convection-permitting regional climate models (CPRCMs) emerged as a promising computationally affordable tool to produce fine resolution (1-4 km) decadal-long climate simulations with explicitly resolved deep convection. This explicit representation is expected to reduce climate projection uncertainty related to deep convection parameterizations found in most climate models. A recent surge in CPRCM decadal simulations over larger domains, sometimes covering continents, has led to important insights into CPRCM advantages and limitations. Furthermore, new observational gridded datasets with fine spatial and temporal (similar to 1 km; similar to 1 h) resolutions have leveraged additional knowledge through evaluations of the added value of CPRCMs. With an improved coordination in the frame of ongoing international initiatives, the production of ensembles of CPRCM simulations is expected to provide more robust climate projections and a better identification of their associated uncertainties. This review paper presents an overview of the methodology to produce CPRCM simulations and the latest research on the related added value in current and future climates. Impact studies that are already taking advantage of these new CPRCM simulations are highlighted. This review paper ends by proposing next steps that could be accomplished to continue exploiting the full potential of CPRCMs. This article is categorized under: Climate Models and Modeling > Earth System Models

National Category
Oceanography, Hydrology and Water Resources
Research subject
Hydrology
Identifiers
urn:nbn:se:smhi:diva-6154 (URN)10.1002/wcc.731 (DOI)000685704200001 ()
Available from: 2021-08-31 Created: 2021-08-31 Last updated: 2021-08-31Bibliographically approved
Weigel, K., Bock, L., Gier, B. K., Lauer, A., Righi, M., Schlund, M., . . . Eyring, V. (2021). Earth System Model Evaluation Tool (ESMValTool) v2.0-diagnostics for extreme events, regional and impact evaluation, and analysis of Earth system models in CMIP. Geoscientific Model Development, 14(6), 3159-3184
Open this publication in new window or tab >>Earth System Model Evaluation Tool (ESMValTool) v2.0-diagnostics for extreme events, regional and impact evaluation, and analysis of Earth system models in CMIP
Show others...
2021 (English)In: Geoscientific Model Development, ISSN 1991-959X, E-ISSN 1991-9603, Vol. 14, no 6, p. 3159-3184Article in journal (Refereed) Published
Abstract [en]

This paper complements a series of now four publications that document the release of the Earth System Model Evaluation Tool (ESMValTool) v2.0. It describes new diagnostics on the hydrological cycle, extreme events, impact assessment, regional evaluations, and ensemble member selection. The diagnostics are developed by a large community of scientists aiming to facilitate the evaluation and comparison of Earth system models (ESMs) which are participating in the Coupled Model Intercomparison Project (CMIP). The second release of this tool aims to support the evaluation of ESMs participating in CMIP Phase 6 (CMIP6). Furthermore, datasets from other models and observations can be analysed. The diagnostics for the hydrological cycle include several precipitation and drought indices, as well as hydroclimatic intensity and indices from the Expert Team on Climate Change Detection and Indices (ETCCDI). The latter are also used for identification of extreme events, for impact assessment, and to project and characterize the risks and impacts of climate change for natural and socio-economic systems. Further impact assessment diagnostics are included to compute daily temperature ranges and capacity factors for wind and solar energy generation. Regional scales can be analysed with new diagnostics implemented for selected regions and stochastic downscaling. ESMValTool v2.0 also includes diagnostics to analyse large multi-model ensembles including grouping and selecting ensemble members by userspecified criteria. Here, we present examples for their capabilities based on the well-established CMIP Phase 5 (CMIP5) dataset.

National Category
Oceanography, Hydrology and Water Resources
Research subject
Hydrology
Identifiers
urn:nbn:se:smhi:diva-6129 (URN)10.5194/gmd-14-3159-2021 (DOI)000660616300001 ()
Available from: 2021-06-30 Created: 2021-06-30 Last updated: 2021-06-30Bibliographically approved
Berg, P., Almen, F. & Bozhinova, D. (2021). HydroGFD3.0 (Hydrological Global Forcing Data): a 25 km global precipitation and temperature data set updated in near-real time. Earth System Science Data, 13(4), 1531-1545
Open this publication in new window or tab >>HydroGFD3.0 (Hydrological Global Forcing Data): a 25 km global precipitation and temperature data set updated in near-real time
2021 (English)In: Earth System Science Data, ISSN 1866-3508, E-ISSN 1866-3516, Vol. 13, no 4, p. 1531-1545Article in journal (Refereed) Published
Abstract [en]

HydroGFD3 (Hydrological Global Forcing Data) is a data set of bias-adjusted reanalysis data for daily precipitation and minimum, mean, and maximum temperature. It is mainly intended for large-scale hydrological modelling but is also suitable for other impact modelling. The data set has an almost global land area coverage, excluding the Antarctic continent and small islands, at a horizontal resolution of 0.25 degrees, i.e. about 25 km. It is available for the complete ERA5 reanalysis time period, currently 1979 until 5 d ago. This period will be extended back to 1950 once the back catalogue of ERA5 is available. The historical period is adjusted using global gridded observational data sets, and to acquire real-time data, a collection of several reference data sets is used. Consistency in time is attempted by relying on a background climatology and only making use of anomalies from the different data sets. Precipitation is adjusted for mean bias as well as the number of wet days in a month. The latter is relying on a calibrated statistical method with input only of the monthly precipitation anomaly such that no additional input data about the number of wet days are necessary. The daily mean temperature is adjusted toward the monthly mean of the observations and applied to 1 h time steps of the ERA5 reanalysis. Daily mean, minimum, and maximum temperature are then calculated. The performance of the HydroGFD3 data set is on par with other similar products, although there are significant differences in different parts of the globe, especially where observations are uncertain. Further, HydroGFD3 tends to have higher precipitation extremes, partly due to its higher spatial resolution. In this paper, we present the methodology, evaluation results, and how to access the data set at https://doi.org/10.5281/zenodo.3871707 (Berg et al., 2020).

National Category
Oceanography, Hydrology and Water Resources
Research subject
Hydrology
Identifiers
urn:nbn:se:smhi:diva-6107 (URN)10.5194/essd-13-1531-2021 (DOI)000640250700001 ()
Available from: 2021-05-25 Created: 2021-05-25 Last updated: 2021-05-25Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-1469-2568

Search in DiVA

Show all publications