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Climate adaptation posed significant threats to railway infrastructure networks. One of the important questions that
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infrastructure managers need to answer is, “How will maintenance costs be affected due to
climate change in different climate change scenarios?” This paper proposes an approach to es-
timate the implication of climate change on the life cycle cost (LCC) of railways infrastructure
assets. The proportional hazard model is employed to capture the dynamic effects of climate
change on reliability parameters and LCC of railway assets. A use-case from a railway in North
Sweden is analyzed to validate the proposed process using data collected over 18 years. The
results have shown that precipitation, temperature, and humidity are significant weather factors
in selected use-case. Furthermore, our analyses show that LCC under future climate scenarios will
be about 11 % higher than LCC without climate impacts.

1. Introduction

Climate change and its consequences, such as the increased intensity and frequency of extreme weather events, pose significant
challenges to the efficiency of railway network operations and associated costs. In northern Europe, harsh weather phenomena,
including heavy rain, snowfall, freezing temperatures, and strong winds, have the potential to disrupt and impair railway infra-
structure. Research indicates that adverse climatic conditions account for 5 to 10 % of overall system failures, contributing to 60 % of
delays in this particular railway network region(Garmabaki et al., (2021) and Thaduri et al., (2021)). The considerable uncertainty in
adaptation to climate change risks presents a profound challenge for planners and decision-makers (Wang et al., (2020) and Blackwood
and Renaud, (2022)). Some studies have been conducted to assess the impact of climate change on transportation infrastructure and
the associated costs. For instance, Swarna et al., (2022) evaluated the Global Warming Potential (GWP) on life cycle assessment (LCA)
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and life cycle cost analysis/assessment (LCCA) for climate change adaptation options in various Canadian locations. Liu, K. et al.,
(2021) calculated the risk faced by Chinese railway infrastructure under different periods and warming levels in combination with
climate models. Their analysis shows that by keeping warming to 1.5 °C instead of 3 °C, the Chinese railway can save 2.06 billion/year.
Banar and Ozdemir, (2015) evaluated Turkey’s railway passenger transportation system from an environmental and economic aspect
using LCA and LCC methodologies. Their findings indicate that 58 % of the total environmental impact of high-speed railways comes
from infrastructure and 42 % from operations. Conversely, for conventional railways, the infrastructure accounts for 39 % of the
environmental burden, while operations contribute 61 %. Pu et al., (2023) formulated a carbon emissions model for railway alignment
optimization involving three stages: construction, operation, and maintenance during a railway’s life cycle. The proposed model is
combined with a cost function to create a bi-objective model and solved with a particle swarm algorithm. Their results analysis shows
that cost-emission balanced alignment is 8.0 % cheaper than manually designed alignment and reduces life-cycle carbon emissions by
4.2 % compared to manually designed alignment.

The research by Chinowsky et al., (2019), utilizing various climate models, suggests that the US rail network could experience a rise
in delay-minute expenses. Historically, these costs could increase from $25 to $45 billion cumulatively by 2100 in a scenario with low
greenhouse gas emissions. These expenses could escalate between $35 to $60 billion in a high-emission scenario. In addition, Cahyo
etal., (2021) investigated the impact of climate change on the operation of the US rail network, highlighting the potential sensitivity of
this system to projected temperature rises. In another study, Garmabaki et al., (2021) offered recommendations to enhance climate
resilience in transportation networks by assessing vulnerabilities and utilizing climate adaptation measures and actions on railway
infrastructure. Hamarat et al., (2019) carried out LCC analysis of railway assets exposed to climate change. They indicate that crossing
renewal, tamping activities, and miscellaneous maintenance bear high costs. Piryonesi and El-Diraby, (2021) investigate the impact of
climate change on road infrastructure using a machine learning approach for predicting pavement condition index. Neumann et al.,
(2021) estimated the impacts of climate change on railroads, roads, and coastal properties under three infrastructure management
response scenarios, including no adaptation, reactive adaptation, and proactive adaptation. They indicated proactive actions reduce
total costs across all three sectors to the low $10 s of billions annually. Qiao et al., (2022) introduced a comprehensive methodological
framework that includes (i) downscaled climate forecasts, (ii) pavement performance predictions, and (iii) life cycle cost analysis.
Palin et al., (2021) emphasize several major obstacles when it comes to assessing risks, including (i) managing uncertainties, un-
derstanding the relationships between weather impacts and railway infrastructure health conditions, (ii) evaluating the present and
future costs of weather impacts, (iii) assessing the potential costs and benefits of adaptation. Mitoulis et al., (2023) proposed a
framework for quantifying the trade-offs between sustainability and resilience for bridge assets and performed a comprehensive
assessment of the performance and cost of transport infrastructure. They examined the impact of climate change on the sustainability
and resilience indexes and showed how the optimum solutions are adversely affected by different climate projections.

The Cox proportional hazards model (PHM), Cox, (1972), is an appropriate approach that can be utilized to integrate the multiple
climatic impacts (covariates) with RAMS (Reliability, Availability, Maintainability, and Safety) and LCC analyses to achieve more
accurate LCC predictions. Several researchers used the PHM to develop reliability analysis by considering the effect of various
covariates (Bendell et al., (1991); Kumar et al., (1992); Kumar and Klefsjo, (1994); Barabadi et al., (2014)). For instance, Barabadi
et al., (2014) used the PHM to predict and optimize spare parts requirements. The study introduces a practical methodology that
incorporates reliability models with covariates, illustrating its effectiveness in forecasting the demand for spare parts. Mazidi et al.,
(2017) proposed a hybrid approach based on Neural Network (NN) approaches and PHM where NN is utilized for real-time perfor-
mance evaluation and PHM helps in real-time stress condition assessment. The hybrid model offers the possibility to evaluate wind
turbine management policies and provides recommendations to improve maintenance strategies. Some of the latest research in this
area is provided in Table 1.

To the best of the authors’ knowledge, utilizing PHM as a tool to integrate and assess the climatic impact on railway infrastructure
assets has not been considered previously in the literature. The paper proposes an LCC methodology to evaluate the impact of climatic
parameters, e.g., temperature, precipitation, wind speed, and relative humidity on LCC under various future climate scenarios,
including Shared Socioeconomic Pathways (SPPs). The proposed model integrates weather covariates with operation and maintenance
parameters (RAMS parameters) to predict climate change impacts on asset behavior and future demand.

The rest of the paper follows: Section 2 explains the background and prerequisites. The impacts of climate change in the northern
region of Sweden are discussed in Section 3. The proposed methodology is presented in Section 4. Section 5 presents the results with a
short discussion of the implications of the proposed methodology of the selected use case. The conclusion of this study is provided in

Table 1
Some of the latest papers on the application of PHM in maintenance.
Reference Short description
Thijssens and Verhagen, Evaluated the use of an extended Cox PHM in analyzing time-on-wing data of aircraft components, finding that it provides a more
(2020) accurate prediction of time-to-failure than traditional survival analysis methods.
Liu, B. et al., (2020) Used PHM to develop a maintenance strategy considering system components’ aging and cumulative damage.
Chen et al., (2020) Combined the Cox PHM with deep learning (DL) techniques to improve the accuracy of maintenance predictions.
Zheng, H. et al., (2021) Proposed a PHM involving degradation trends and environmental factors to predict product reliability.
Zheng, R. et al., (2023) Introduced a new hybrid model for repair and replacement, which integrates the PHM with a stochastically increasing Markovian
covariate process.
Kasraei et al., (2024) Integrating the condition health of railway assets with meteorological data through PHM. Utilizing machine learning for clustering

the railway network into four distinct areas.
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Section 6.
2. Background

This section briefly describes the three main aspects of the study: Switches and Crossings, LCC formulation, and Cox Proportional
Hazard Model.

2.1. Switches and crossings (S&C)

S&C is a critical asset in railway networks, which has a great impact on the railway network’s capacity and availability. The S&C
can be technically divided into three major panels: switch, closure, and crossing panels (see Fig. 1). The main components of S&C
include switch rails, stock rails, crossings, wing rails, point machines, rail pads, sleepers, switch rollers, heating devices, and slide
plates. In this paper, all these components have been categorized into four categories: Switch, Point Machine, Crossing, and Heating
Device. As can be seen in Fig. 1, the switch blades, front joint, and other components in the switch panel, except the Switch drivers, are
included in the Switch category. The category of point machines involves switch drivers in this panel. All Clouser and Crossing panels
components are in the Crossing category. The heating device includes heating elements on rail sides in S&C and other electrical assets.

2.2, LCC formulation

The LCC formula for an asset includes the costs associated with the design, production, installation, operation and maintenance
(0&M), and disposal of the S&C asset over its expected lifespan. There are several formulas for calculating LCC, and we have followed
the LCC formula given in (Nissen, (2009); Galar et al., (2017); Ebeling, (2019)) see Equation (1):

LCC = Acquisition Costs + Operation and Support Costs + Phase — out Costs (D)

where

e Acquisition Costs: include the costs of design, fabrication, production, manufacture, installation, and other costs related to the
development stage.

e Operation and Support Costs: include the cost of operations, maintenance (inspections, repairs, and replacements), support, and
failure costs during the operational life of the asset.

e Phase-out Costs: net salvage value, which includes residual or salvage value, dismantling cost, and disposal cost.

Acquisition and phase-out costs are considered to be fixed within the context and scope of this study. Thus, this research focused on
the operation and support costs of the LCC formula. Operation and support costs can include activities such as regular monitoring and
inspections, cleaning, lubrication, repair, and other actions of the S&Cs. The frequency and intensity of maintenance activities can
depend on several factors, including the design life of S&C, the layout of the track, the materials used, the environmental conditions,
speed, and the traffic volume. This paper focuses on some corrective maintenance actions with high frequencies of intervention.

2.3. Cox Proportional Hazard Model

The Cox PHM is a statistical technique used to analyze the time-to-event data, where multiple factors influence the occurrence of an
event. It assumes that the hazard rate, which represents the probability of experiencing the event at any given time, is a function of
covariates or predictor variables. The model estimates the relative risk or hazard ratio associated with each predictor. This model was
used to analyze the significant climate parameters influencing S&C performance. This model assumes that the hazard function can be
separated into a baseline component and exponential functions associated with the explanatory variables, also called covariates

In special cases
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Fig. 1. Schematic presentation of S&C asset(Mishra et al., (2017)).
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(Bendell et al., (1991)). Equation (2) illustrates the hazard model formula for the Cox PH model.

h(t,X) = ho (1) 2P @
Where X is the predictor vector variable. Hazard ratio (HR) represents the hazard for an asset divided by the hazard for another
asset, where the assets being compared differ in their predictor values, denoted by X1 and X2 see Equation (3).
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3. Climate change and its impact on the North region in Sweden

Swedish transport administration divided the whole railway network into five operations and maintenance areas, as given in Fig. 2.
This section focuses on Luled and Kiruna cities, which are both located in the North region.

3.1. Analysis of weather parameters in some areas in the North region

The impact of climate change is already evident through various observable phenomena, such as an increase in extreme weather
events like heat waves, floods, and storms. It is important to note that climate change affects different regions unequally. There are a lot
of models and databases that investigate climate change’s effects all over the world. In this study, we focus on the North region. We
have illustrated the effects of climate change on the Luled and Kiruna cities, as shown in Figs. 2, 3, and 4. The utilized data originated
from ERAD, the fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis of global
climate patterns, covering the period from 1979 to 2021, with a spatial resolution of 30 km (Meteoblue, (2023)).

Fig. 3-a and Fig. 3-b show an approximation of the average annual temperature for Luled and Kiruna, respectively. The dashed blue
line represents the linear trend of climate change. The trend line slopes upwards from left to right, indicating a positive temperature
trend, signifying that Luled and Kiruna are experiencing warmer conditions due to climate change for a given period. In the lower
section of the graph, you can see the representation of warming stripes. Each colored stripe corresponds to the average temperature for
a particular year, with blue colors denoting years colder than the average of 1979-2021 and red representing warmer years.

Kiruna

North —
Middle =
East —
West —
South

Fig. 2. Region’s railways of Sweden.
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Fig. 3. Yearly Temperature Change (Meteoblue, (2023)).

Fig. 4-a and Fig. 4-a present an estimation of the average total precipitation for Luled and Kiruna cities. The dashed blue line
represents the linear trend of climate change. The trend line slopes upwards from left to right, indicating a positive precipitation trend,
suggesting that these cities experiencing increased rainfall over time due to climate change. In the lower section of the graph, you can
observe the representation of precipitation stripes. Each colored stripe corresponds to the total precipitation of a particular year, with
green denoting years wetter than the average of 1979-2021 and brown representing drier years.

Based on the above explanation, it can be observed that the temperature in this region shows an increasing trend over time, and
there is also a rise in annual precipitation during the studied period. Understanding the current and future weather impacts can assist
transport infrastructure managers in selecting the most effective strategy to mitigate the associated risks. For this purpose, RCP and
SSPs climate change scenarios have been developed. These scenarios are explained in Section 3.2. It is important to note that climate
change scenarios are not intended to predict the future but to provide projections of potential outcomes or pathways to achieve specific
goals.

3.2. Climate change projection scenarios for North region

There are two kinds of climate change projection scenarios: Representative Concentration Pathways (RCPs) and Shared Socio-
economic Pathways (SPPs). In these scenarios, the focus is primarily on long-term trends in global climate and greenhouse gas
emissions. However, the effects of climate change can be seen in changes to local weather patterns and extreme weather events, such as
heatwaves, droughts, floods, and storms.

RCPs proposed by UN Climate Panel IPCC5 knowledge can be used to project future climate changes. Four RCP scenarios, RCP2.6,
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Fig. 4. Yearly Precipitation Change (Meteoblue, (2023)).

RCP4.5, RCP6, and RCP8.5, have been considered, which differ in their assumptions about future climate scenarios. Furthermore, SSP
scenarios describe different socioeconomic developments, considering the influence of climate change scenarios (O’Neill et al., (2014).
The five SSP scenarios are defined as SSP1 (Sustainability), SSP2 (Middle of the Road), SSP3 (Regional Rivalry), SSP4 (Inequality), and
SSP5 (Fossil-Fueled Development). Fig. 5 illustrates the precipitation projection of these scenarios for North in Sweden based on a
multi-model ensemble. The precipitation trend in both RCP and SSP scenarios shows an increasing amount of precipitation in a long-
term period.

Based on findings from prior research (Garmabaki and Kumar, 2019), Fig. 6 illustrates the anticipated winter temperature pro-
jections for Lulea and Kiruna across various RCP scenarios. The results demonstrate a consistent rise in temperature in all scenarios. For
instance, in the Lulea area, comparing the period 2011-2040 to 1971-2000, there is an increase of almost 4 degrees Celsius under the
RCP8.5 scenario. Furthermore, the temperature increment for the period 2071-2100 compared to 2011-2030 is particularly note-
worthy, with a peak approaching 5 degrees Celsius under the RCP8.5 scenario. This upward trend is concerning, as it has the potential
to impact critical factors such as zero crossing and an elevated likelihood of climatic failures. Meanwhile, Fig. 7 depicts the projected
increase in summer temperatures for Lulea city during the 2071-2100 period compared to 2011-2030, indicating a rise of approxi-
mately 4 degrees Celsius.

Fig. 8 illustrates the projected winter precipitation for Lulea and Kiruna based on various RCP scenarios. Our results indicate a rise
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Fig. 5. Projected precipitation for North in Sweden (World Bank Group, (2021)).
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Fig. 6. Projected winter temperature (°C) in two Swedish cities in the historical period 1971-2000 grey boxes, and the periods 2011-2040,
2041-2070, and 2071-2100 according to RCPs. The boxes represent the interquartile range (IQR) of the data, the line within represents the median,
and the whiskers extend from the box by 1.5xIQR. Data points outside the whiskers are marked by circles.

in precipitation across all scenarios. Also, the summer precipitation is projected to increase and is a relatively small change compared
to winter precipitation (see Fig. 9). Furthermore, there is a negligible change in summer precipitation over RCP2.6 scenario.

4. Methodology

The paper proposes a methodology to assess the impact of climatic parameters, e.g., temperature, precipitation, and relative hu-
midity, on LCC of railway infrastructure assets under various future climate scenarios, including SSP1-SSP5. The proposed model
integrates weather covariates with operation and maintenance parameters (RAMS parameters) to predict the impact of climate change
on asset behavior and LCC. Our research focus is limited to considering the above-mentioned climatic impacts on the number of S&Cs
located in the North region of Sweden. To perform this task, the proposed methodology utilizes Cox PHM to integrate weather
covariates with operation and maintenance parameters (RAMS parameters) to predict the impact of climate change on the LCC of the
assets.

Fig. 10 depicts the proposed framework, including the following five steps:

e Data collection,

e Data preprocessing and filtering,

e Development of LCC model with RAMS parameters,
e Impact modeling of climate change on LCC,

e LCC analysis based on different SSP scenarios.
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Fig. 7. Projected summer temperature (°C) in two Swedish cities.
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2041-2070, and 2071-2100 according to RCPs.

Due to the stochastic nature of the failure events, the proposed methodology focuses on corrective maintenance actions; therefore,
acquisition costs, preventive actions, and phase-out costs were not considered in the LCC analyses.

4.1. Stepl: Data collection and Data analysis

The data for this study was gathered from multiple data sources, including the Ofelia database (failure reporting system), which
records all infrastructure failures, and the BIS database (asset registry), which provides information on failed assets for 18 years
2001-2018. VViS (The Swedish Transport Administration’s weather information database) and SMHI databases (SMHI, (2023)) have
been used to collect weather parameters and associated climate measures. There is a need to combine the various railway databases,
including Ofelia, BIS, and SMHI databases, to extract climate features, namely Climate_id. This indicator identifies the causal rela-
tionship between S&C failures and climate parameters at the time prior to failure (Garmabaki and Kumar, (2019)). All the climate-
based and non-climatic failures have been extracted by text mining technique, failure causes code, experts’ opinions, etc.

For the study, the variations in temperature, precipitation, and humidity for the Norrbotten region associated with various SSP
scenarios have been collected from the World Bank webpage (World Bank Group, (2021)).
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Fig. 9. Projected summer precipitation (mm/day) in two Swedish cities.
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4.2. Step 2: Data preprocessing and filtering

The preprocessing task was conducted to improve the dataset’s quality by removing anomalies and cross-validation of failure with
weather incidences. This phase includes data cleaning (such as handling missing data and outliers), data integration to unify the data
that comes from multiple sources, and visualizing data to gain insights and identify patterns and relationships in data. The distribution
of all the failures across different regions in Sweden is illustrated in Fig. 11-a, and the number of S&C assets in each district is displayed
in Fig. 11-b. The proportion of non-climate and climate-related failures in various regions of Sweden was depicted in Fig. 11-c and
Fig. 11-d, respectively. For this research, the North area of Sweden was selected as a use case. The assets in the North region account for
11 percent of the total assets and contribute to 25 percent of climatic failures; therefore, the North region is selected for the use-case. To
improve accuracy, only failures with a repair time of less than 480 min were included in the analysis, as recommended by experts. This
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decision was made based on two reasons, including (i) Due to redundancy S&Cs in the railway yard, the failed asset may not receive
immediate prioritization, and (ii) Climate-related failures typically require short repair and maintenance times (less than 480 min),
only common and not extreme incidences are considered here.

This study focuses on operational costs associated with repair and maintenance actions of 1258 S&C. Thus, some maintenance
actions are considered, including Snow cleaning, Cleaning, Repair, Washing, Lubrication, Control, Adjustment, and Recovery. The
percentage of these actions can be seen in Table 2. By analyzing this data, we can better understand the specific actions that are most
frequently performed and identify potential areas for potential improvement in terms of reducing operational costs and improving
dependability and comfort performance. According to available data, Snow cleaning (as an action with the highest frequency) has the
highest cost, about 35 %.

Fig. 12 illustrates the percentage of each action cost according to climatic or non-climatic mode. Snow cleaning, Cleaning, Washing,
and Adjustment actions have higher costs in climatic mode, whereas Repair, Adjustment, Control, and Lubrication have higher costs in
non-climatic mode.

The existing database has six essential categories of extreme weather conditions, including Abnormal temperature, Flood, Fire,

Table 2
Maintenance actions for climatic failure in Sweden.
Actions Frequency Action Description
Percentage
Snow cleaning 41.88 % Removal of snow and ice during the winter season
Cleaning 26.20 % Remove debris, sand, stones, and other foreign objects in the S&C.
Adjustment 9.60 % Correction of the geometric features or positional misalignment of S&C after standard measurement
Washing 9.47 % Cleaning of turnout components using a fluid or other relevant medium.
Lubrication 4.12% Applying a substance such as oil or grease to S&C components to minimize friction and allow smooth movement.
Control 1.84 % Gauging and functional check of the state of the system.
Repair 1.33% Maintenance actions are carried out to return S&C to a state where it can perform the desired function by replacing
components, welding, and grinding.
Recovery 1.05 % Resetting and returning the S&C component to initial or calibrated status after failure; performing regular standard
(Restoration) operational procedures.
Other 4.06 % All other actions, e.g., grinding, tamping, tightening, and etc.

10
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Snow and Ice, Strom/snowstorm, and Thunderstorm. The major climatic factors contributing to failures in the North region are Snow
and Ice, Abnormal temperature, and Storm/Snowstorms, whereas Fire, Flood, and Thunderstorms occur relatively less. Primary failure
analysis in cross-validation with weather databases reveals that climatic failures constitute 53 % of all failures, while unknown and
non-climatic failures account for the remaining 47 % of the North region. Fig. 13 presents the details of cost according to climatic and
non-climatic failures. Notably, Snow and Ice contribute to 83.3 % of the total cost of climatic failures, emphasizing the significance of
implementing measures to mitigate the impact of this failure cause in the region.

Fig. 14 illustrates the cost distribution associated with each maintenance activity across all defined components of the S&C system.
This figure will help better understand the critical S&C components and provide insight for infrastructure managers regarding resource
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Fig. 13. Cost according to Climate ID indicator.
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allocation and maintenance planning, leading to improved dependability performance.
4.3. Step3: Identification model for LCC with RAMS parameters

The maintenance and repair costs play the main role in LCC analysis. The present value of all costs throughout the expected lifespan
of the S&C system is calculated by applying an appropriate discount rate, which accounts for the time value of money. The various
actions taken to treat the fail component should be reflected in the LCC model. Due to their criticality and failure rate, we are just
focusing on the switch, point machine, crossing, and heating system. The cost per action is one of the most challenging pieces of
information to obtain when developing the LCC model. In this study, the cost is modeled using Equation (4):

1 1
LCC = Zkaij WFU(IC) {CP‘/ + MTTR,_',' (nLU CL + CE;J)} (4)
Where i is the action type, k is the year’s duration, and j is the component type. MTBF;(k) is the Mean-Time-Between-Failure of
component j and a failure mode associated with action i for year kth; MTTR;; is the Mean-Time-To-Repair of component j (in minute
units) and a failure mode associated with action i; n; is the number of workers needed for a given action; Cp is the cost of the spare part
(in monetary units); C;, is labor cost (in monetary units/hour); and Cg is the equipment cost needed to carry out the intervention.

MTBF and MTTR are two important key performance indicators that need to be estimated for action i and component j*. MTTRs
are estimated, and results are shown in Table 3 for the given period. To estimate MTBF, the trend test is utilized at the first step for
determining underlying processes e.g., HPP, RP, and NHPP. Trend-free behavior should be modeled by HPP or RP, while data with
trend should be modeled with a nonhomogeneous Poisson process such as the power-law process. In other words, a trend test is carried
out to see if the cumulative failure time significantly increases or decreases over calendar time.

Fig. 15 represents Mean Cumulative Function (MCF) over cumulative failure time of the Snow cleaning action (action ith) and
Switch component (component jth). Use this plot to determine whether your system is improving, deteriorating, or remaining con-
stant. It is evident in Fig. 15 that there is a gradually increasing trend in the curve over time. This increase indicates that the system is
becoming less reliable or efficient over time.

The trend test analysis given in Table 4 confirms the interpretation of the above curve, and the P-value indicates that the null
hypothesis of all trend tests is rejected. This means NHPP should be followed to estimate MTBF.

It may be noted that, in MIL-Hdbk-189 and Laplace trend tests, the null hypothesis is “No trend” (HO) versus the alternative hy-
pothesis of “Monotonic trend”. The Anderson-Darling test (AD) rejects the null hypothesis (HO is “No trend”) in the presence of both
monotonic and non-monotonic trends when the value of AD is large (Garmabaki et al., (2016)).

Fig. 16 shows the graphical behavior of the cumulative failure time of the Control action for the switch component. The trend test
analysis confirms that cumulative failure time is trend-free, as given in Table 5 (the P-value is greater than 0,05). Thus HPP/RP are
suitable modeling approaches for this action. Furthermore, Fig. 17 shows the graphical goodness-of-fit-test of selected distributions.
For all the actions performed on the prespecified four components, the estimated parameters, along with the appropriate process, have

been listed in Table 6.
100%
90%
80% B Snow cleaning
70% M Lubrication
60% W Repair
50% | Cleaning
A0% Washing
m Control
30%
B Adjusment
20%
W Recovery
Crossing Heating device Point machine Switch
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| T

0%

Fig. 14. The cost of actions for each part of S&C related to climatic failures.
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Table 3

Mean Time To Repair.
Actions Switch Crossing Point Machin Heating Device
Snow cleaning 71.108 87.305 66.05 71.262
Adjustment 65.828 126.72 68.783 76.645
Control 52.483 48.729 50.397 57.859
Repair 110.821 184.306 115.629 102.375
Recovery 65.348 121.758 84.623 65.471
Cleaning 56.633 57.945 56.823 57.121
Washing 64.331 57.624 63.877 66.707
Lubrication 52.341 42.06 55.261 48.225

Mean Cumulative Function for Cum_failure_time snow

1400 Parameter, MLE

Shape Scale

1200 127631 563628
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800+
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400
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0 20000 40000 60000 80000 100000 120000 140000 160000

Cum_failure_time snow

Fig. 15. Graphical demonstration of MCF versus cumulative failure time of snow cleaning for Switch component.

Table 4
Trend test result for snow cleaning of switch.
MIL-Hdbk-189 Laplace Anderson-Darling
Test Statistic 2079.44 10.21 59.48
P-Value 0.000 0.000 0.000
Result Rejected Rejected Rejected

4.4. Step 4: Impact of Climate Change on Failure Hazard Rate by Cox-PHM

For Cox PH analysis, various covariates, including Temperature (T), Humidity (H), Precipitation (P), and failure time, have been
selected. It is important to note that the effects of the selected weather covariates are not immediate but gradual. Therefore, the
average hourly value of covariates during the 24 h preceding the failure event is calculated and used as input in the Cox PHM to reflect
the meteorological effects. In the initial step, three stations from different geographical locations in the North region, which included
32 S&Cs, were selected. Bartlett’s test is utilized for heterogeneity tests to identify homogenous S&C groups. The analyses presented in
this paper are related to a selected homogenous group consisting of 9 S&Cs. For the details, see Garmabaki et al., (2016).

4.4.1. Calculating baseline hazard function

At this stage, the baseline hazard function of the selected 9 S&C assets is determined for the Cox-PH model. The graphical and
statistical trend tests are employed to assess the validity of the independent and identically distributed (IID) nature of TBFs of com-
bined S&Cs. Fig. 18 shows that the selected assets exhibit an obvious trend. Furthermore, statistical tests such as the Military
Handbook, Laplace, and Anderson-Darling have also confirmed the findings of the graphical tests. Consequently, the Power Law
model, which is a specific form of the NHPP, is utilized to construct the baseline. The parameters of the power law process, including
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Fig. 16. Trend test for Control action for Switch part.

Table 5
Trend test result for Control Action for Switch.
MIL-Hdbk-189 Laplace’s Anderson-Darling

Test Statistic 1717.30 -1.11 2.05

P-vValue 0.838 0.268 0.086

Result Not reject Not reject Not reject

Weibull_2P Weibull_3P Weibull_CR
Exponential_1P Exponential_2P Loglogistic_2P

Fig. 17. Fitting distribution of Control Action.

shape (f) and scale (0), are estimated using Minitab software. The estimated shape and scale parameters for the selected homogenous
group are 1.557 and 11423.1, respectively. Therefore, the baseline hazard rate function is as follows:

1.557 t 0.557
Y/ - (e
() = 112231 (1 1423.1) ®)

4.4.2. Calculating the coefficients of covariates

The Andersen-Gill (AG) model has been used to assess the impacts of covariates on hazard rate. Table 7 displays the coefficients of
the covariates and their corresponding hazard ratios (HR). The P-values in Table 8 indicate that the null hypothesis is rejected on a
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Table 6
Trend test for all actions.

Actions Shape(p) Scale(0) t0 Distribution

Switch Snow cleaning 1.276 563.628 NHPP
Adjustment 0.758 18.73 NHPP
Control 0.842 167.66 Weibull 2P
Repair 0.883 238.315 0.516 Weibull_3P
Recovery 1.441 3935.77 NHPP
Cleaning 1.8 3384.41 NHPP
Washing 0.559 166.472 0.016 Weibull_3P
Lubrication 0.689 222.198 0.016 Weibull_3P

Crossing Snow cleaning 1.226 3158.75 NHPP
Adjustment 1.612 13195.2 NHPP
Control 0.905 1400.9 Weibull_2P
Repair 1.189 1466.03 NHPP
Recovery 0.681 4378.99 40.633 Weibull_3P
Cleaning 1.547 6298.56 NHPP
Washing 0.698 1315.88 Weibull_2P
Lubrication 0.637 1818.64 0.583 Weibull_3P

Point Machine Snow cleaning 1.318 706.067 NHPP
Adjustment 0.859 35.486 NHPP
Control 0.805 168.911 0.016 Weibull_3P
Repair 0.926 281.635 Weibull_2P
Recovery 1.464 3920.16 NHPP
Cleaning 1.69 2914.89 NHPP
Washing 1.088 341.401 NHPP
Lubrication 1.332 1386.38 NHPP

Heating Device Snow cleaning 1.6031 4408.31 NHPP
Adjustment 0.662 578.322 Weibull 2P
Control 1.174 1202.24 NHPP
Repair 0.668 413.109 Weibull 2P
Recovery 1.409 2701.32 NHPP
Cleaning 1.842 8349.72 NHPP
Washing 1.5 7883.94 NHPP
Lubrication 1.641 12646.9 NHPP

Mean Cumulative Function for time
System Column in Objnr

7 Parameter, MLE

Shape Scale
60 155660 114231

507

MCF

30

20

T

0 20000 40000 60000 80000 100000 120000 140000 160000
time

Fig. 18. Failure behaviour of the assets.

significant level of 10 % for all the covariates, implying that covariates significantly impact the hazard ratio.
Hence, according to Cox PHM and Equation (2), the hazard rate equation is presented in Equation (6):

h([,X) — hO (t)e(—0.0ZIZT—0.0ile—l.902P) (6)
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Table 7

Results of Cox PH model.
Covariate Coef.f; HR P-value*
Temperature (T) -0.0212 0.979 0.069
Precipitation (P) 1.902 6.699 0.046
Humidity (H) —0.0212 0.979 0.002

* The null hypothesis is “no significant effect on the hazard rate”.

Table 8

The combined impact of precipitation, humidity, and temperature on hazard rate.
Year SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7 SSP4-8.5
19 0.102723 0.110398 0.126578 0.12081 0.123696
20 0.102972 0.109895 0.125938 0.120453 0.124351
21 0.104766 0.110891 0.125456 0.119569 0.124691
22 0.107183 0.113321 0.124652 0.11868 0.124914
23 0.110498 0.115876 0.123747 0.117609 0.12403
24 0.113806 0.118411 0.122721 0.116896 0.123179
25 0.116665 0.119603 0.121792 0.11613 0.12161
26 0.118159 0.119304 0.120461 0.115612 0.11904
27 0.118506 0.117004 0.119418 0.115785 0.115981
28 0.117393 0.113987 0.118153 0.116031 0.112799
29 0.115222 0.1106 0.116867 0.115948 0.109863
30 0.112154 0.108127 0.115998 0.116086 0.107069

where hy(t) is according to Equation (5).

Based on collected 18-year meteorological data, weather baselines are calculated based on the average values of temperature T,y =
-1.54 °C, humidity H,y = 81.57 %, and precipitation P,y = 0.057 mm. Fig. 19 represents the weather baseline (blue curve) and the
hazard rate affected by selected weather parameters (red curve) in accordance with the values T = -1, H = 78, and p = 0.096. The
difference between these two curves signifies the impact of the weather parameters on the hazard rate function.

Through this method, we’re able to assess and represent the influence of SSP scenarios on the hazard rate, which is further
implemented for the estimation of LCC.

The projected values for temperature, precipitation, and humidity for the North region under various SSPs scenarios have been
derived from the World Bank webpage (World Bank Group (2021)).

Fig. 20 reveals the increasing temperature and precipitation trends under SSPs scenarios, whereas the humidity trend is decreasing.
To assess the yearly impact of these parameters on the hazard rate, Equation (2) has used the annual variations. Additionally, we
compared these values with the weather baseline (blue curve in Fig. 19) to calculate the percentage of variation of the hazard rate for
each SSPs, annually. To calculate new hazard rate capturing SSPs feature, there is a need to extract the projected value for the
associated SSP. For instance, in Scenario SSP1-2.6, for the year 26th, the projected values for temperature, precipitation, and humidity
are 0.45, 0.0959, and 77.75 %, respectively. By substituting these parameters into Equation (7), we estimated the new hazard rate, and
then by comparing it with the baseline, we can estimate the variation of the hazard rate, which is 11.9 %. In other words, the impact of
exogenous factors on LCC, which in our context is climate change impacts, is calculated from PHM and shown in Table 8 for each
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Fig. 19. Impact of covariates on Hazard function.
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Fig. 20. Projected some parameters in North of Sweden (World Bank Group (2021)).

scenario.

4.5. Step 5: LCC based on SSP scenarios

In this paper, we applied two approaches to evaluate LCC, including (i) LCC without climate change impacts and (ii) LCC under
climate change impacts. Utilizing these distinguished approaches enables us to compare the impact of SSP scenarios on LCC.

In the first approach, LCC is calculated using Equation (4) in 30 years. Historical data for the duration of 18 years beginning from
2001 have been used for the LCC-RAMS model to estimate LCC for the next 12 years.

In Equation (4), C, = 850 SEK per hour, n; = 2 labor, Cg = 4,000 SEK per hour for snow-cleaning action, and Cr = 1000 SEK per
hour for other actions. In this study, we suppose Cp = 0 due to the low frequency of spare parts in climatic failures. Fig. 21 shows the
evolution of the cost of maintenance in this period. As can be seen, Snow Cleaning shows the highest portion of the total cost over the
mentioned period, and ’Cleaning’ has the next rank because these actions have a high frequency among climatic failures.

In the second approach, the impact of hazard rate variations can be calculated through the amount of climatic impact (negative or
positive impact/value in y) on the MTBF of selected assets per action evaluated from PHM. Negative impact can be interpreted as
reduced climatic failure, while positive impact intensifies the failure occurrence. We have considered the additive mathematical form,
as given in Equation (7), to assess the impact of SSP scenarios and estimate the LCC.

1 1 1
L = .+ MTTR;(n,, )
CCor =3 Y, Yoy g 1 * ) |+ MR ) %
where y, is positive/negative increment/decrement of selected impact for given SSP scenarios; see Table 8.
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Fig. 21. Maintenance costs (LCC) in 30 years.

For instance, in Fig. 22, the LCC variation for 30 years is depicted under the SSP1-1.9 scenario. The blue bar represents the LCC
without considering the impact of climate change parameters, while the orange bar represents the LCC when the impact of climate
change parameters. Fig. 22 indicates that the LCC will increase when the impact of weather parameters is considered (orange bar as
approach 2) compared with LCC without considering climate impacts (blue bar as approach 1).

To have clear understanding of climate on maintenance actions, there is a need to categorize the LCC per maintenance actions
defined in section 4.2 for different scenarios. Fig. 23 presents the cost of the different actions for the SSP1-1.9 scenario. Our analyses
show that snow cleaning costs include 34 to 37 percent of the total cost over 30 years, and repair action costs vary between 14 and 16

percent.
In Fig. 24, the LCC under SSP 2-4.5 is illustrated. It is evident that the increase of LCC in this scenario is higher compared to

scenario 1-1.9. The reason for this difference is that scenario 2-4.5 has a larger hazard rate variation. As a result, the impact of climate
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Fig. 22. Estimation of LCC under scenariol-1.9.
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Fig. 24. Estimation of LCC under scenario2-4.5.

change parameters on the LCC has more effect in SSP 2-4.5, leading to a greater variation in costs over the specified period. Fig. 25
represents the estimation of LCC under SSP1-2.6, SSP3-7, and SSP5-8 scenarios. In all SSP scenarios, the LCC will increase when the
impact of weather parameters is considered. The analyses show that SPP2-4.5 and SSP3-7 reveal the highest increment, almost 11.6
percent.
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5. Discussion and results

Comprehensive reliability analyses have been performed on the number of S&C assets installed in the North region of Sweden,
considering homogeneity and heterogeneity factors. The previous research (Calle-Cordén, A et al., (2017); Calle-Cordén, A. et al.,
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Fig. 26. The variation of annual mean temperature according to SSPs scenarios of the period 18-30.
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(2018)) assumed that the failure occurrence follows the same Weibull distribution for all S&Cs and actions while calculating MTBF in
LCC formulation, whereas, in this study, we estimate the RAMS parameter based on the underlying process, HPP, RP, and NHPP as
shown in Table 6. In addition, LCC is broken down to perform maintenance actions associated with the component to explore the
climate impacts on specific actions, resulting in updating maintenance actions and strategies.

The implications of SPPs scenarios on temperature, precipitation, and humidity are different; thus, the impact of SSPs on hazard
rate will also be different. Our analyses show the combined impact of precipitation, humidity, and temperature on hazard rate under
SSPs scenarios has a positive effect, i.e. y, > 0. In this case, LCC under SSP scenarios is greater than LCC without climate impact.

The impact of SSPs scenarios on temperature is shown in Fig. 26 from years 18 to 30. This figure shows that the annual mean
temperature under different scenarios may increase (scenario SSP1-2.6) or decrease (scenario SSP1-1.9) from year 18 till year 26. The
temperature has inverse effects on hazard rate according to Cox PH analysis. If we consider only the temperature covariate, it can have
a negative impact (y;, < 0) on the hazard rate under scenario SSP1-1.9. Note that precipitation has a direct effect on hazard rate with a
high ratio, while temperature and humidity have inverse effects according to Cox PH analysis; therefore, the combined impact of these
weather parameters on hazard rate has a positive impact (see Table 7).

Corresponding to each SSPs scenarios, we can define LCC scenarios i.e. LCC1-1.9, LCC1.2.6, LCC2-4.5, LCC3-7, and LCC5-8.5. All
the LCC scenarios are close to each other due to combined hazard rate variation, which is close to each other (see Fig. 27). These
differences for LCC1-1.9, LCC1.2.6, LCC2-4.5, LCC3-7, and LCC5-8.5 are 11.2 %, 10.8 %, 11.6 %, 11.6 %, and 10.7 % respectively. It
may be noted that the difference between ordinary LCC and LCC under SSPs scenarios is notable. SMHI predicted that snow precip-
itation will reduce and it is expected to experience a reduction trend in winter maintenance cost based on RCP scenarios; however, the
impact of zero crossing will increase in the future. Therefore, the frequency of ice removal (snow cleaning) activity will increase in the
future.

It may be noted that various uncertainty sources affect LCC estimation, including (I) uncertainty in RAMS parameters due to their
probabilistic nature and (II) uncertainty associated with monetary and cost parameters. One can perform sensitivity analyses and
identify the sensitive parameters that affect the research outcome.

The outcome of this research can help decision-makers plan the budget according to the considered scenario or design the needed
activities for climate change adaptation. All calculations in this study are without considering the climate change adaptation activity
and its impacts on hazard rate and associated maintenance strategies.

6. Conclusion

This paper presents a methodological framework to assess the impact of climate change on the LCC of switches and crossing in the
North region of Sweden. The LCC analysis is a helpful tool for infrastructure managers to compare different intervention strategies and
select the most desirable option based on the RAMS parameters.

Railway infrastructure is expected to be more susceptible to natural disasters and will continue to face increased climate-related
risks. However, it is important to integrate various climate projection trajectories with a high level of spatial precision with RAMS
parameters across various stressors and perform cost/benefit trade-offs across a range of adaptation measures.

Recent research shows that the effect of climate change on transport infrastructures’ operation is noticeable. Therefore, decision-
makers need to consider climate change consequences in their decision-making process. This paper proposes the new LCC method-
ology, considering climate-related incidents and future climate projections. We have faced several challenges, including data quality
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Fig. 27. LCC without SSPs scenarios and LCC with SSPs scenarios of the 30th year.
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and silos data sources. In our use-case, the existing databases are not designed to capture all the climatic impacts and there is a need to
upgrade the railway infrastructure data collection system. In addition, there is a need to utilize more IoT and sensor technology at
stations to collect more accurate weather parameters. The long-distance of weather stations has a significant impact on the identifi-
cation of underlying failure causes.

Comprehensive LCC assessment requires considering various parameters (technical and monetary) in the model structure. This
study focuses more on corrective maintenance actions due to the stochastic nature of the failure events and relaxes other potential
costs, including acquisition costs, preventive actions, and phase-out costs.

This study represents how maintenance cost and associated actions under various climate parameters are changing, which provide
insight for infrastructure manager for better seasonal operation and maintenance planning and select the most critical climate
adaptation measure that poses higher cost on infrastructure operation and maintenance over the years.

The results have shown that precipitation, temperature, and humidity are significant weather factors in selected use case.
Furthermore, our analyses show that LCC under SSP’s scenario experiences higher costs, about 11 %, than LCC without considering
climate impacts. This means following the current maintenance planning resulted in more corrective actions and required imple-
mentation of climate adaptation actions and preventive measures to cope with adverse climatic consequences.

In the future, we will utilize machine learning tools to improve data quality and identify the correlation between covariates and
failure incidents. In addition, there is a need for a more rigorous investigation of climate-related stressors beyond temperature, pre-
cipitation, and humidity, including vegetation fire, groundwater level, and extreme climate events.
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