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ABSTRACT

To meet the European Union’s 2050 climate neutrality target, future electricity generation is expected to largely
rely on variable renewable energy (VRE). VRE supply, being dependant on weather, is susceptible to changing
climate conditions. Based on spatiotemporally explicit climate data under a Paris-proof climate scenario and
a comprehensive energy conversion model, this study assesses the projected changes of European VRE supply
from the perspective of average production, production variability, spatiotemporal complementarity, and risk of
concurrent renewable energy droughts.

For the period 2045-2055, we find a minor reduction in average wind and solar production for most of Europe
compared to the period 1990-2010. At the country level, the impact of climate change on average VRE production
is rather limited in magnitude (within +3% for wind and +2% for solar). The projected mid-term changes in other
aspects of VRE supply are also relatively small. This suggests climate-related impacts on European VRE supply
are less of a concern if the Paris-proof emission reduction pathway is strictly followed.

Based on spectral analysis, we identify strong seasonal wind-solar complementarities (with an anticorrelation
between -0.6 and -0.9) at the cross-regional level. This reduces the demand for seasonal storage but requires
coordinated cross-border efforts to develop a pan-European transmission infrastructure.

The risk of concurrent renewable energy droughts between a country and the rest of Europe remains non-
negligible, even under the copperplate assumption. Central Western European countries and Poland are most
vulnerable to such risk, suggesting the need for the planning of adequate flexibility resources.

Europe
Spectral analysis
Power system

1. Introduction

To be in line with the Paris Agreement that aims to limit the global
mean temperature increase well below 2 °C, the European Union has
pledged to achieve economy-wide climate neutrality by 2050 [35]. The
energy transition has become a key cornerstone underlying the EU’s cli-
mate strategy, the European Green Deal [34]. This requires developing a
power system largely based on variable renewable electricity (VRE) gen-
eration technologies that are fuelled by weather resources (e.g., wind
and solar). According to recent scenario studies [33,55], the EU should
increase the share of VRE in total electricity generation to at least 68% to
fulfil its climate ambition. However, the large-scale integration of VRE
into the power system inevitably increases its susceptibility to weather
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and climate conditions. Additional flexibility resources, such as balanc-
ing reserves, energy storage, Power-to-X technologies and interconnec-
tors are needed to address the stochastic nature of VRE generation in
grid operation [63]. The challenge is further compounded by changing
weather patterns due to climate change (e.g., wind profile, solar irra-
diance, cloud coverage). Not only can changing climate conditions in-
fluence the average production and variability of VRE supply, but they
may alter the spatiotemporal dependency between VRE assets across lo-
cation and technology [60,63]. Since the development and operational
lifetimes of VRE assets and complementary energy infrastructure span
typically from several years to multiple decades, adapting planning and
operation of the power system to future climate change becomes crucial
for a sustainable and reliable energy supply [88].
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Based on standard variables simulated from climate models, climate
change impacts have been assessed in numerous studies by comparing
VRE supply between different future periods and a reference historic
period. These impacts, often referred to as “climate signals”, are
typically measured using statistical measures such as mean, standard
deviation and correlation of long time series of VRE output data (10 to
30 years). For instance, the change in mean outputs of one or more VRE
technologies has been analysed often at different geographic scales in-
cluding the world [40], China [39], Japan [82], the Taiwan Strait [17],
and several regions within Europe [4,15,21,24,52,53,60,61,71,98,110].
The coefficient of variation or standard deviation (sd) has been applied
by Gao et al. [39], Jerez et al. [60], Jerez et al. [61] and Tobin et al.
[99] to analyse changes in variability of VRE outputs or output ramps.
Next to the univariate statistics of mean and sd characterising individual
VRE assets, the climate signals of bivariate metrics measuring the de-
pendence behaviour between VRE assets have also been studied, but to
a much lesser extent. For instance, Hou et al. [53] examined climate im-
pacts on the complementarity of daily generation profiles between solar
photovoltaics (PV) assets across Europe. Based on an innovative spectral
decomposition, Jerez et al. [60] evaluated local wind-solar technologi-
cal complementarities within various EU regions at multiple timescales
spanning from daily to interannual. Both studies employ the Pearson
correlation, the most commonly used dependence metric. However,
interregional technological dependence or complementarity between
wind and solar assets in relation to changing climate conditions have
not yet been investigated. Moreover, correlation, which is a linear met-
ric that measures the overall association between two random variables,
does not provide insight into the tail behaviour of the joint probability
distribution (hereafter referred to as tail dependence) [1]. In the context
of VRE supply, correlation is unable to capture tail dependence in
extreme low or high production events between VRE assets, highlight-
ing the need for alternative dependence metrics in climate impact
assessment.

The impact of climate change on VRE supply has been evaluated for
different climate scenarios. Within the climate modelling community,
climate scenarios are described by representative concentration path-
ways (RCPs).! In the European context, most studies predominantly fo-
cus on climate impacts on VRE supply under RCP 8.5 and RCP 4.5 in
the long-term future beyond 2070. Directions of projected changes in
mean wind and solar outputs as a result of climate change are incon-
clusive, in part because of varying geographic foci and different levels
of detail in energy conversion modelling employed. A detailed review
of state-of-the-art literature concerning climate impacts on VRE sup-
ply is summarized in Table Al of the Appendix. Although RCP 8.5 is
considered the business-as-usual scenario in some studies [15,52], its
realization requires the burning of an unprecedented quantity of coal
(37,254 EJ between 2010 and 2100, see, e.g., Riahi et al. [90]) larger
than some estimates of recoverable coal reserves [46].% By contrast,
RCP 4.5 represents an intermediate mitigation scenario, as it lies be-
tween emissions reduction efforts prescribed by the current policies and
the latest Nationally Determined Contributions® Hausfather & Ritchie

1 RCPs prescribes the evoluation of green house gases (GHGs) concentrations
to reach targets that limit radiative forcing increase by 2100 relative to the pre-
industrial level. The targets are set at 2.6, 4.5, 6.0 and 8.5 W/m? to enable a wide
span of emission scenarios [74]. At a confidence level between 66%—100%, the
global mean temperure increases under RCP2.6, RCP4.5, RCP6.0 and RCP8.5
are respectively 0.3-1.7, 1.1-2.6, 1.4-3.1 and 2.6-4.6 °C [57].

2 Despite increasing implausibility over time, RCP 8.5 might be arguably jus-
tified as the worst-case scenario to compensate for insufficient representation of
fat-tailed uncertainties associated with the climate sensitivity in climate mod-
elling (Weitzman, 2011).

3 Nationally Determined Contributions are non-binding national climate miti-
gation plans contributing to the Paris target. They are required to be established
and updated on a five-year basis by all stipulated parties of the Paris Agreement
[102].
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[113]. As the only scenario consistent with the Paris target and the
EU’s climate-neutrality ambition, RCP2.6 is highly relevant to under-
stand the implications of strict global climate mitigation for future Eu-
ropean VRE supply. Yet it has received little attention so far in the
literature except for two studies (with different findings). Yang et al.
[110] analysed the change in mean VRE outputs between the near-term
(2010-2039) and medium-term (2040-2069) for seven European cities.
They found a reduction in solar outputs (—0.01% to —2.29%), but uncer-
tain directions of change (—12.1% to 13.2%) for wind in winter. Based
on the ensemble mean of coarse-resolution general circulation models
(GCMs), Gernaat et al. [40] found increased and decreased mean out-
puts for solar and offshore wind respectively in Europe between 2000
and 2050.

To the authors’ best knowledge, no studies have evaluated the full
implications of RCP2.6 for future European VRE supply beyond the
mean outputs before. To fill this knowledge gap, this study charac-
terises and quantifies the climate impact on the availability, variabil-
ity, and spatiotemporal dependency of VRE supply’ in Europe based
on a set of high-resolution regional climate projections provided by the
CORDEX initiative and driven by CMIP5 global circulation models un-
der RCP 2.6 [68,70]. The novelty and scientific contribution can be
highlighted for several aspects. First, following a copula-based tail de-
pendence model, we employ the conditional probability of concurrent
extremes as a metric to measure the interdependence of low VRE avail-
ability between countries. This not only makes it the first study to quan-
titatively analyse the intercountry risk of compound renewable energy
drought (“Dunkelflaute”) events, but it also offers new insights into the
planning and operation of interconnected energy systems from perspec-
tives of system adequacy and security. Second, we extend the spectral
decomposition method of Jerez et al. [60] to assess multi-timescale tech-
nological complementarity to cross-regional applications. This enables
the identification of cyclic patterns hidden in the original series of VRE
outputs and potential spatiotemporal complementarity between VRE as-
sets in different regions. Third, we introduce a comprehensive energy
conversion model integrating geospatial data, meteorological reanaly-
sis data, and bias-adjusted climate data to more accurately represent
the effect of location-specific topographical features on power produc-
tion, particularly for wind turbines. Finally, taking into account spatial
constraints and land cover classes, we assess the spatially explicit geo-
graphic potentials (in terms of maximum installable capacity in MW) for
VRE technologies in Europe, excluding unsuitable areas to improve the
realism of aggregating VRE generation profiles to country or regional
levels.

The geographic scope of Europe in this study is defined as the current
27 Member States (MS) of the European Union® plus the United King-
dom (GB), Norway (NO), and Switzerland (CH). Following a bottom-
up approach, four commercially mature technologies for VRE genera-
tion are explicitly considered, i.e., onshore wind, offshore wind, utility
PV, and rooftop PV. We focus on the projected change for VRE gener-
ation profiles in the medium-term future period (2045-2055) around
2050, corresponding to a mean temperature increase of about 1.2 °C

4 In line with other climate impact studies [15,21,24,39,52,53,110], VRE sup-
ply under future climate conditions in this study is characterized on the basis of
per unit of installed capacity. This means that we do not aim to determine the
optimal installed capacity in future energy system, which is a sizing problem,
being dependent on future electricity demand and use of storage. A detailed
power system model is needed to determine the size of VRE capacity alongside
other generation capacity.

5 They include Austria (AT), Belgium (BE), Bulgaria (BG), Croatia (HR),
Cyprus (CY), Czech Republic (CZ), Denmark (DK), Estonia (ES), Finland (FI),
France (FR), Germany (DE), Greece (EL), Hungry (HR), Ireland (IR), Italy (IT),
Latvia (LV), Lithuania (LT), Luxembourg (LU), Malta (MA), Netherlands (NL),
Poland (PL), Portugal (PO), Romania (RO), Slovakia (SK), Slovenia (SI), Spain
(ES), and Sweden (SE).
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Fig. 1. An overview of the research method.

over the European domain compared with 1990-2010.% 2050 also rep-
resents the year in which the European power system must be fully
decarbonized with a high share of VRE. The results of this study can
support more informed decision-making and risk management regard-
ing energy policy, power system planning, investment, and financing
in renewable projects for policymakers, system planners and opera-
tors, utility companies and investors. Beyond the scope of Europe, the
method presented in this paper is also repeatable for other regions of the
world.

This paper is structured as follows. Section 2 describes the input
data and method steps used for data processing and post-processing.
This includes an elaboration of the energy conversion model, the
geospatial analysis for determining geographic potentials, and the
statistical measures employed to characterise VRE supply under his-
toric and projected climate conditions. The results are presented in
section 3, followed by a discussion in section 4 regarding the lim-
itations of the study. Finally, concluding remarks are provided in
Section 5.

2. Data and method

An overview of the method applied to carry out this study is out-
lined in Fig. 1. The method contains 4 steps that can be divided into a
data processing procedure and a post-processing procedure. All steps
were performed based on ArcGIS or R. Starting from the input data
(Section 2.1), in the data processing procedure we performed a geospa-
tial analysis to characterise the geographic potentials for each VRE
asset at a spatially resolved geographic grid over the European do-
main (Section 2.2). We refer to each VRE technology type located at
a specific grid cell as an individual asset. Meanwhile, energy time se-
ries (measured by rating factors, which are normalized outputs per
unit of installed capacity) for the reference historic and target fu-
ture periods per VRE asset were determined from bias-adjusted cli-
mate data via energy conversion modelling (Section 2.3). The post-
processing procedure first aggregated energy time series at grid cell
level into country-level series for each considered VRE technology
(Section 2.4). Afterwards, country-level climate signals of projected

6 Own calculation based on ensemble mean of climate projections used in this
paper, see section 2.1 for details.

changes in VRE supply based on selected statistics were characterised
(Section 2.5).

2.1. Input data

The primary data inputs for this study are climate data, meteorolog-
ical reanalysis data, and geospatial data. This section focuses on climate
data and meteorological reanalysis data, while we describe geospatial
data and its usage in section 2.2.

e Climate data

We use downscaled high-resolution regional climate model (RCM)
data from the CORDEX initiative (www.cordex.org) for the EUR-
CORDEX domain. The selected projections all come at 0.11 deg hori-
zontal resolution and follow RCP 2.6. Due to the computational load
of the energy conversion model, we were restricted to an ensemble of
three projections. Those were selected in a way to cover the spread of
the climate signal within the given RCP2.6 as good as possible. We did
this by visual inspection of the monthly climate signals and found a
clear grouping pattern according to the driving global circulation model
(GCM). This is in line with previous studies (e.g. Hawkins & Sutton
[471). Therefore, we chose three projections that all use a different GCM
(see Table 1).

We used publicly available data at www.esgf.org which offers a stan-
dard set of climate variables (hereafter referred to as “standard climate
variables”) for the CORDEX projections. Of those standard variables,
three are relevant to the energy conversion of VRE resources, namely
surface wind speed at 10 m, surface downward solar radiation and near-
surface temperature at 2 m. The variable time series are temporally re-
solved at 3 hourly.

We followed a standard impact modelling approach in which the cli-
mate model data is bias-adjusted before using it as input data for the im-
pact assessment. The regional climate projections were bias-adjusted by
the bias-adjustment tool MIdAS [3]. The bias-adjustment aims to adjust
the climate model data in a way that they resemble a chosen reference
data as closely as possible during a chosen reference period. This pro-
cedure thereby makes the usage of climate model data more consistent
to the reference data. As reference data, we used the HydroGFD data
[2] for temperature, and ERAS reanalysis data [29] for wind speed at
surface and incoming shortwave radiation. The reference data comes at
0.25 deg resolution, and the climate model data at 0.11 deg was inter-
polated to the 0.25 deg grid of the reference data.
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Table 1
List of climate projections used.
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GCM RCP Realization RCM Institute Acronym
MPI-M-MPI-ESM-LR RCP2.6 rlilpl SMHI-RCA4 vla SMHI MPI
ICHEC-EC-EARTH RCP2.6  rl2ilpl SMHI-RCA4 _v1 SMHI ICHEC
MOHC-HadGEM2-ES ~ RCP2.6  rlilpl KNMI-RACMO22E v2 ~ KNMI MOHC

Table 2

A detailed list of used climate variables and their names in climate data, reanalysis data and this paper.

Variable name in climate data Variable name in ERA5 reanalysis

Variable name in this paper Relevant to Relevant to solar

data wind energy energy
conversion conversion

Surface speed at 10 m (sfcWind) 10 m wind speed (wspd) Wind speed at 10 m (m/s) Y Y

NA 100 m windspeed (wspd100m) Wind speed at 100 m (m/s) Y

Surface downward solar radiation (rsds) Surface shortwave radiation Global horizontal irradiance (W/ m?) Y
downwards (ssrd)

NA Total sky direct solar radiation at Direct component of global horizontal Y
surface (fdir) irradiance (W/ m2)

NA Total sky diffuse solar radiation Diffuse component of global Y
at surface (fdif) horizontal irradiance (W/ m?)

Near-surface temperature at 2 m (tas) Temperature at 2 m height (t2m) Ambient temperature ( °C) Y

NA Forecast albedo (fal) Surface albedo Y

The bias-adjusted data at 3-hourly resolution was further linearly
interpolated to 1-hourly resolution in order to meet the energy model’s
requirements.

¢ Reanalysis data

Meteorological reanalysis combines the atmospheric circulation
model with large numbers of historic observations to deliver a complete,
consistent and close-to-reality hindcast of the past weather [29]. As
state-of-the-art global meteorological reanalysis, ERA5 reanalysis pro-
vides hourly time series data available at 0.25° X 0.25° resolution for
the period 1959 to the present. Compared with the bias-adjusted cli-
mate data, reanalysis data contains a larger set of variables relevant to
the power production of VRE. Information derived from reanalysis data
can be directly fed into the energy conversion model. This avoids the
use of unnecessary or oversimplified assumptions. Table 2 presents a de-
tailed list of climate variables relevant to the energy conversion of VRE
resources and their abbreviations. The same variable can have different
names in climate data and reanalysis data. For the sake of convenience,
we have unified their names and units in this paper.

2.2. Geospatial analysis

Based on a geospatial analysis the geographic potentials for each
VRE technology are determined per grid cell. Starting from a 0.25° X
0.25° geographic grid over the territory and exclusive economic zone
of Europe, we explicitly exclude areas unavailable for VRE deployment
considering a wide range of spatial constraints. The centroid coordinates
of each grid cell serve to establish connections with the VRE generation
profiles determined from the climate and reanalysis data (see section
2.3). Updated from the authors’ previous work [54], a detailed list of
spatial constraints and corresponding geospatial data used for each VRE
technology is presented in Table 3.

Next, based on the latest CORINE land cover (CLC) inventory [19],
the suitability factor (as fraction area per land cover class) determines
the areas (in km2) suitable for VRE deployment within the remaining
available area. Suitability factors have been used extensively to assess
the geographic potentials of VRE technologies, but they vary widely
between studies, especially for onshore wind. For instance, they can
be as high as 0.9 in Bosch et al. [9], while Zappa and van den Broek
[111]; Bruninx [13] assume a uniform low sustainability factor at 0.06
across all land cover classes. In this study, we estimate suitability factors
for onshore wind based on Mckenna et al. [73], Hoogwijk et al. [51],

Held et al. [48] and Deng et al. [22]. The value is adopted if suitability
factors for a certain land cover from more than one source agree with
each other. Otherwise, we use a moderate estimator falling within the
value range. For offshore wind, a factor of 0.4 is applied to the available
ocean area following Hu et al. [54]. The suitability factor for utility PV
is mainly based on Hoogwijk [50], where a relatively optimistic value
of 0.05 is assigned to areas with sparse vegetation. As for rooftop PV,
we conservatively assumed that deployment is exclusively restricted to
the roof surface in the urban area, and industrial and commercial units
and not on other artificial surfaces. The suitability factors are developed
by factoring in the average building footprint” per land cover class, the
ratio of areas reserved for other usages (assumed at 0.5 according to
Bodis et al. [7]), and the composition of roof types. We distinguish two
main roof types: flat roof and pitched roof. Based on data sampled from
the Stuttgart Region of Germany, it is estimated that 95% and 50% of
roof surfaces are pitched for residential and commercial buildings, re-
spectively [92]. The pitch angle of the pitched roof is identically set at
35°, following Zappa and van den Broek [111]. In absence of detailed
information, a uniform distribution of the four facets is applied for the
orientations of the titled roof surface, but the north-facing roof is ex-
cluded from PV installation due to economic considerations.

The suitability factors associated with each land cover class are pre-
sented in Table 4.

Finally, the geographic potentials in terms of maximum installable
capacity per grid cell are determined based on the specific spacing area
(in km2/MW) for each VRE technology. Regional or country-level po-
tentials for each VRE technology can be obtained by summing grid-level
potentials within the region or country’s border.

Wind turbines are spaced in relation to the rotor diameter (D). Based
on 19,221 wind turbine sites clustered to 3800 wind farms in Germany,
the average distance between turbines within a single farm is approx-
imately 6D [69]. Therefore, we opted to use a specific spacing area of
6D*6D for both onshore wind and offshore wind in this study. The selec-
tion of commercial modules representative of wind installation follows
Hu et al. [54]. Three onshore turbine modules and one offshore turbine
module from Vestas, the Danish manufacturer, are explicitly considered

7 Building footprint can be considered as an approximate for the horizontal
projected area of the building’s roof surface. Detailed building footprint sampled
from the Netherlands and the United Kingdom is extracted from Zappa and van
den Broek [111].



‘NZSSZNT4/€905 01:10p dew 92In0sa1/MI1A,/310°SONRWLIONUI0ID quy//:sd1Y BlA passadde  diz'[ow 3urddiys g [0z mel,, SWeU 3} 19pun eleq .
‘[+G] Te 39 nH uo paseq pajepd( :921n0S

ea1e dn-inq adky
o) ur seare 19A00 pue] Jod
doyjoos ajqeims 10108] A1[1qRIINS

[61] 8102 (DTD) AtoruaAu]
190D pueT aumio) {[g] dejy 190D

810210 10j W 00T ‘€'TA 600T

9d£) 19100 puey 1od 19A0DQO[D IO (UTUIDIR £9'T)

Advances in Applied Energy 10 (2023) 100134

uo Surpuadag a1 uo Surpuadag VN I10308] A171qRIMNS 911 Uo Surpuadaq .£00°0 pueT [BqO[D £'TA 600Z I19A0DQO[D I19A00 pue]
(€10T “Te 30 ung) (uruore og)
VN (%66°9 10) > VN [z€] (%0T 10) 1€ TT> .50°0 UOHBAS[F UO paseq pare[nafed (99139p) ado[s
"S9SSO[
A)1suap Ire YIIm pajeIdosse AlIsuap
1omod puIm JO UOTIONPAI [ENIURISqNS
® 0] anp Juawdo[PAdp puIm
310Ysuo 10J Y31y 00) SB PIIdPISUOD
SI W )QSZ 9A0QE UOTIRAS[
‘[z€] "Te 39 Y2y SuImo[og (urunre og) [€01] (0£0dOLD) uoneas g
VN VN VN 00S5T=> .50°0 Pu033$-d1v € [eqO[D - UONRAS[H [ENSIQ (ux) uoneAd[y
(urumnire §°0) [p¥] den xapur
1005 1005 VN 105 .800°0 UONBUOZ 1501euldd [eqO[D (%) IsoewIdg
seare pajoaroxd seare paloajord seare [T01] (VddM) Sea1y pa1dalold uo
ﬁm_bmv.ﬁm,—; _m_uuwv\:m,ﬁ —u@uuvaok& [uwmnLeu Tm_uuww\ﬂvh_ seaie GOHUMHO\‘Q —quuwwtvh_ VN vmmﬁ—mumﬁ —uTO>> Uﬂr—. Um:m—& ﬁmHuvuOkm HNEv—v seale —Uwuumﬁuum
[6] 21qed 9y1 [Z£] seAanenIuI 9[gBd SUOHBIIUNWUIOD
VN VN JO SOPIS (10q Wwoxy JuLyNq LUy [ VN VN 9[qed easzopun jo dey aqed 8919 QuLrewqng
[64]
(¥ UOTSI9A) €T0T - T66T SALIAS WL,
(urure °0) $1Y317T sWMYSIN STO-dSINA 189010
VN VN UOISN[IXa [N YN .800°0 £[8£] 900z sarewInSH SuLIely SED [BGO[D s811 110
‘suiiey
PUIM I0USIJO 10] BIIR d[qR[lRAR
9() WOIJ papn[IXa 9q 0 seale
JATSUDIUI-[ISSIA SB PIIIPISUOD ST uonRULIOJUT
11 ‘SUONBIO] [9SS9A 00ST UBY) dI10W (urunre 9) [Gi] (Uead0 s,plIOM dY) UO uoned0[ pue AJNUIpI
VN VN sapnpul 192 puid ay JI "00ST> VN .10 1oedurr veumy ur a3ueyd Jo aoed JULdAY T9SS9A [RIDISUILIOD)
[¥8] w 09
Mmorq :unoﬁ J9jem e je JIns %:m-ﬂm:
A3y, "pa1apisuod are (uneoyy
0ou) SUONBPUNOJ PaxXy Wo10q
IIM SDUIQIN] puIMm 2I0YSO A[UQ [11] 020Z (0D9dD)
VN VN 09> VN (urure §z°0) .#00°0 SUB320 ) JO IRYD dLISWAYIR] [BISUID (w) ppdeqg
[Z€] uoneIopISUOD 150D 10J W G
0} pajiu]] ST 2107S 03 20ueISIp
WNWIXRW JY[, ‘SULIR] PUIM I0YSHO
J0 s1oedWl [RIUSWIUOIIAUD pUR
ANTIQISIA 1DL1ISD1 0] 195 ST UDf OT~
1€ 9I0US 0) 9DUR)SIP WNWIUTW
VN VN S81-0T VN VN VN (uny) a10ys 03 DUEISIA
[8€l (€
Eommum\c S9UO0Z JTWOUO0DH 2AISNOXH o)
pue m—ﬂm&m——m %b::OU TYSH 2143 jo uorun
BOJR [RLISILID) BOJR [RLISILID) ‘[9g] 9102 sde]A (SLAN) sansnels
dAnRNSIUIWPY dAnRHSIUIWPY 9UOZ JAISN[IXD [BIIWOUODY BIIR [BLIISOLID) SALIRISIUTWPY VN 10J SIU[] [BLIOJLLIQ, JO SINJB[IUSWON (zuep) A10)1119 ],
(31yadeys jo A3oroutds) TYA yoea
Ad doyooy Ad &mmn puIm a1oysygo puIm a1oysuQ 9sed Ul YN) BIBp JO Uonnjosay $321IN0S Bl 10j syurensuod [eneds

J. Hu, V. Koning, T. Bosshard et al.

*sa180[0u) TYA INoj Jo Juswdo[aAap 3} 10j S[[IBABUN SEIIR JO UOISN[IXS J) J0j sjurensuod feneds
€ dIqelL



J. Hu, V. Koning, T. Bosshard et al. Advances in Applied Energy 10 (2023) 100134

Table 4
Sustainability factors for different CLC land cover classes.

cLe Suitability factor
land 1st Sub- 2nd cLc
. Rooftop PV
cover Class Sub-Class Code | Onshore | Offshore | Utility P
Class wind wind PV Pitched | Flat
roof roof
Continuous urban fabric 111 0 0 0 0.119 0.007
Urban fabric
Discontinuous urban fabric 112 0 0 0 0.067 0.004
Industrial or commercial units 121 0 0 0 0.041 0.045
o Industrial, Road and rail networks and associated land 122 0 0 0 0 0
3 commercial and
(¢
g transport units Port areas 123 0 0 0 0 0
o Airports 124 0 0 0 0 0
1]
Zg . Mineral extraction sites 131 0 0 0 0 0
g | Minedumpand I, dites 132 0 0 0 0 0
construction sites
Construction sites 133 0 0 0 0 0
Artificial, non- Green urban areas 141 0 0 0 0 0
agricultural ] .
vegetated areas Sport and leisure facilities 142 0 0 0 0 0
Non-irrigated arable land 211 0.2 0 - 0 0
Arable land Permanently irrigated land 212 0 0 0 0
Rice fields 213 0 0 0 0 0
Vineyards 221 0.1 0 0 0
Permanent crops Fruit trees and berry plantations 222 0.1 0 0 0
Olive groves 223 0.1 0 0 0
Pastures Pastures 231 0.2 0 0 0
Annual crops associated with permanent crops 241 0.2 0 0 0
Heterogeneous Complex cultivation patterns 242 0.2 0 0 0
agricultural areas Agricultural land with significant natural vegetation | 243 0.2 0 0 0
Agro-forestry areas 244 0.1 0 0 0 0
Broad-leaved forest 311 0 0 0 0 0
Forests Coniferous forest 312 0 0 0 0 0
§ Mixed forest 313 0 0 0 0 0
T‘: Scrub and/or Natural grasslands 321 0.2 0 0 0
§ herbaceous Moors and heathland 322 0.1 0 0 0
§ vegetation Sclerophyllous vegetation 323 0.1 0 0 0
§ | pesociations Transitional woodland-shrub 324 0 0 0 0 0
2 Beaches, dunes, sands 331 0 0 0 0 0
@©
‘@‘ Open spaces with Bare rocks 332 0 0 0 0 0
° little or no Sparsely vegetated areas 333 0.5 0 - 0 0
vegetation Burnt areas 334 0 0 0 0 0
Glaciers and perpetual snow 335 0 0 0 0 0
Inland marshes 411 0 0 0 0 0
Inland wetlands
8 Peat bogs 412 0 0 0 0 0
c
2 Salt marshes 421 0 0 0 0 0
(%
= Maritime wetlands Salines 422 0 0 0 0 0
Intertidal flats 423 0 0 0 0 0
Water courses 511 0 0 0 0 0
8 Inland waters
'-g Water bodies 512 0 0 0 0 0
2 Coastal lagoons 521 0 0 0 0 0
[
g Marine waters Estuaries 522 0 0 0 0 0
Sea and ocean 523 0 - 0 0 0

Source: compiled based on Copernicus (2018); Bosch et al. [9]; Zappa and van den Broek [111]; Brunnix et al. [13]; Mckenna et al. [73]; Hoogwijk
[50]; Held et al. [48]; Deng et al. [22]; Bodis et al. [7]; Sliz-Szkliniarz [92].
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(see Table 4 for detailed technical specifications including the rotor di-
ameter).

The Sanyo HIP-225HDE1 module is adopted for the installation of
both utility PV and rooftop PV. It has a rated capacity of 0.225 kW, cor-
responding to a panel surface area of 1.39 m?2 [85]. The specific spacing
area for PV depends on the mounting method. For rooftop PV installed
on a flat roof or utility PV mounted on close-to-flat ground (slope < 4
°), the PV panels are mounted at empirical PV angles to maximize en-
ergy yields. In this case, the panel azimuth angle (Z,) is set at 180°, i.e.,
facing true south. Based on rule-of-thumb, the empirical panel tilt angle
(p) in Northern hemisphere is a function of the local latitude (L) [18]:

f=0764L + 2.14°, for L <65° )

f = 0.224L +33.65°, for L > 65° o)

The specific spacing area is a function of panel angles and solar an-
gles under a reference condition to avoid self-shading [20]:
sinf

tana,, o

Spy = Apy <cosﬂ + cos (Zs,re/ - Zp)) ®

Where Apy,: Specific PV panel area;

p and Z,: panel tilt angle and azimuth angle;
a,,r and Z,, . solar altitude angle and azimuth angle under the
reference condition

The third lowest hourly solar attitude angle on December 21st (win-
ter solstice) is set as the reference condition for low latitude areas (L
<60°) [20], while for high latitude areas (L > 60°) November 1st is used
instead to avoid negative altitude angle. The mounting of rooftop PV on
the pitched roof surface is constrained by the pitch angle and orientation
of the roof. We exclude the possibility of tilted mounting. This means
that the PV system must be installed parallel to the roof surface. In this
case, the specific spacing area equals the specific panel area.

2.3. Energy conversion model

2.3.1. Wind

Wind energy conversion is mainly based on power curves of repre-
sentative commercial wind turbines, but additional adjustments are in-
tegrated in the model to consider effects of local elevation, propagation
of wind speed and wake losses. The same conversion model is applied
for both onshore and offshore wind in this study, except for that the
power curve for offshore wind at sea level does not need to be adjusted
for elevation. This follows a five-step approach.

First, we extrapolate the climate variables of wind speed at a refer-
ence height (10 m) to wind speed at turbine hub height. Following van
Zuijlen et al. [104], we assume the hub height for onshore and offshore
wind are 150 m and 100 m respectively. The extrapolation is based on
the power law profile:

a
U, = Uref<zzf> (€]
re,

where v, and v,,, are wind speeds corresponding to the turbine height
(z) and reference height (z,, ) ais the shear exponent.

The shear exponent is not readily available for either reanalysis data
or climate data. However, since the reanalysis data provides two vari-
ables of wind speed at 10 m and 100 m, regression is used to derive
grid cell-specific exponents. The same set of exponents is applied to the
climate data, which contains only one wind variable, i.e. surface wind
speed at 10 m. Compared with most studies simply assuming two uni-
form exponents for land (0.143) and sea (0.11), this avoids unnecessary
bias in estimating wind speed at turbine height.

Secondly, we characterise wind class per grid cell and assign suitable
turbine modules based on the IEC’s classification (see Table 5). In this
study, we select 3 onshore modules and 1 offshore module from the
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Danish manufacturer Vestas. The power curves of the 4 turbine modules
are presented in Fig. 2, which describe the relationship between wind
speed and the corresponding wind power rating factor at standard test
conditions.

In the third step, we determine the elevation-adjusted power curve
per wind site. The kinetic power (P,;,,) extracted by the wind turbine
is theoretically proportional to air density (p;,):

Pyina = 0.5C,py AV, )

Where A is the area swept by the turbine blades, C, is the power coef-
ficient and P, is the rated power.

Hence, the impact of elevation associated with wind sites above sea
level on air density should be considered when using the power curve
to extract the rating factor. The relationship between elevation (h) and
air density simply reads:

Pn=po—Yh (6)

where p, = 1.225kg/m? is the air density at zero elevation and y = 1.194 -
10~* kg/m? is a proportionality constant. The proportional relationship
between power and air density in formula (5) can be used to calculate
the rating factor corrected for air density along every wind speed of
the original power curve (e.g. Hu et al. [54]), but it is only suitable for
stall-regulated wind turbines [97]. For modern pitch-regulated turbines
considered in this study, we follow the approach of Eurek et al. [32]to
reconstruct the power curve adjusted to air density. It calculates the
equivalent wind speed for each rating factor along the original power
curve via formula (7)

vy =10, (ﬂh/pz)_l/'" 7

The exponent m is a function of wind speed, according to Sven-
ningsen [97]. It is constant at 3 until the wind speed reaches 7.5 m/s,
linearly decreases to 1.5 until 12.5 m/s and remains constant afterwards.

Next, we develop the multi-turbine power curve from the elevation-
adjusted single turbine power curve for each grid cell. The multi-turbine
power curve factors into the spatial propagation of wind speed within
a specific site under the same wind regime. Because generation across
multiple turbines is not fully synchronous, the aggregated outputs are
smoothed out to a certain extent. Assuming the instantaneous wind
speed follows a Gaussian distribution within a specific site, most ex-
isting studies (Norgaard and Holttinen [80]; Gibescu et al. [42]; Staffell
and Pfenninger [95]) apply a Gaussian filter to the single turbine power
curve to develop the multi-turbine curve. However, the method to de-
termine sd of the Gaussian filter diverges between studies. The method
to determine the Gaussian filter sd is adapted from Gibescu et al. [42] in
this study, because it has several advantages over other methods. It does
not require assumptions about turbulence intensity or high-frequency
wind speed data to calculate it. Furthermore, it takes site-specific di-
mensional characteristics into account, enabling the determination of
Gaussian filters for each grid cell.

The sd of the Gaussian filter (o) for a specific wind site at grid cell
level can be calculated according to formulas (8)-(10)

6 =0, 0,5(1 - e_d_/Ddecay) ®

d— — dmax -; 2dmin (9)
A

Ay =21 =2 (10)

Where,

o, sd associated with site-specific wind speed time series;

d: average distance between two random wind turbines within the
same site;
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Table 5
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Key characteristics of four Vestas turbine modules corresponding to the IEC’s wind site classification.

IEC’s wind turbine classification Usage Representative Rated Rotor Specific Cut-in speed Rated speed Cut-off
according to average wind speed commercial capacity diameter power (m/s) (m/s) speed
at turbine height turbine module (MW) (m) (W/m) (m/s)
Class It Onshore Vestas 105-3.3 3.3 105 381.8 3 13 25
>8.5m/s
Class II: Onshore Vestas 117-3.3 3.3 117 306.9 3 13 25
7.5-8.5m/s
Class III: Onshore Vestas 126-3.3 3.3 126 264.7 3 12 22,5
6-7.5m/s
Class IV: NA
<6 m/s
Class S: Offshore Vestas 164-8.0 8 164 378.7 4 13 25
User-defined (Offshore)
Sources: IEC [56]; Wind turbine models.com [106-109].
Onshore turbine Offshore turbine
1 1
1
09 !
i —— C|ass S
08 i (Vestas164-8)
_ 07 i
o 1
£ os { Class|
®© ! (Vestas105-
o 05 1
oo Yr 1 3.3)
c 1
= 04 — @ —f 1 ----- Class I
o _
03 : (Vestas117
i 33)
0,2 i e (ass ]
0,1 : (Vestas126-
8
0 i 3.3)
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Wind speed at hub height (m/s)

Wind speed at hub height (m/s)

Fig. 2. Power curves for four Vestas wind turbine modules.

D .,y characteristic distance or decay parameter characterising the
exponentially decaying relationship between correlation in wind
speeds and the distance, which is 723 km for Europe [43];

d . the maximum distance between two wind turbines within the
same site;

d ;¢ the minimum distance between two wind turbines within the
same site, which is array spacing distance (6D) between two ad-
jacent turbines;

A,inq: available area for wind development within a grid cell-based
wind site.

For illustrative purposes, Fig. 3 presents the original single turbine
power curve at sea level for a Class III wind turbine, the air-density ad-
justed power curve at 1200 m as well as the multi-turbine power curve.

The last step considers efficiency losses after determining the hourly
rating factor time series per wind site using the multi-turbine power
curve. We distinguish efficiency losses between wake losses and other
losses. Wake losses describe the effect of wind speed reduction for down-
wind turbines located at the shaded area of upwind turbines, which is
a function of the array spacing of the wind farm. While most studies
assume a fixed ratio of wake losses, we consider wake losses as a func-
tion of wind speed based on Knorr [69]. Fig. 4 plots the impact of mean
wake losses on turbine efficiency in relation to wind speed for the Knorr
dataset containing 3800 German wind farms. For comparison, the effi-
ciency curve associated with the Dena dataset [69], including 12 spe-
cific German wind farms, is also presented. It is deemed that the Knorr
dataset is more universally applicable as the sample size is much larger.
Compared with an 8% fixed rate of wake losses often assumed in Zappa
and van den Broek [111], the maximum wake losses based on the Knorr
dataset is less than 4%. For other losses (e.g., mechanical and electri-

cal conversion losses), a 5% fixed ratio is assumed to be consistent with
other studies [111].

2.3.2. Solar PV

The energy conversion for both utility PV and rooftop PV follows the
same four-step method.

Firstly, we determine the solar angles per grid cell based on the local
geographic coordinates (longitude and/or latitude) and the Coordinated
Universal Time (UTC) timestamp. The timestamp is set at the mid-point
of each hour in the time series. The most important solar angles are the
solar altitude angle and azimuth angle. The readers are referred to Hu
et al. [54] and Kalogirou [64] for the detailed formulas used to perform
the calculation.

Secondly, a decomposition model is used to determine the global
horizontal irradiance (1) into the direct (14, ,) and diffuse (1, ;) com-
ponents. The fraction (df) of the diffuse component in global horizontal
irradiance follows a function conditional on the clearness index (k) [30]:

k=1,/1, )
1-0.09 for k <0.22
df = Laizn _ J0.9511 - 0.1604k + 4.388k2 — 16.638k3 + 12.336k* a12)
Ly for0.22 <k<0.8

0.165 for k > 0.8

where k, I, I, are the clearness index, global horizontal irradiance and
extraterrestrial horizontal irradiance.

For reanalysis data, the direct and diffuse components of global hor-
izontal irradiance are readily available, while for climate data, only
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Multi-turbine curve for an onshore site (6;=0.19)
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Fig. 3. Illustration of a multi-turbine power curve for onshore wind site.

Wake losses as a function of wind speed
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global horizontal irradiance is given. Therefore, we need to estimate
the extraterrestrial horizontal irradiance [28]:

. H,— H
I, = 12 3'(’IA.L.EO((sin L cos §)(sin H, —sin H,) + ”( iSO ) (sin L sin 5))
(13)
E, = 1+0.0033 cosr(@) (14)
365

Where I, is solar constant (1367 W/m?2); E|, is eccentricity correc-
tion factor; § is declination angle; L is local latitude; H, and H, are the
hour angle at the start and end of the time interval of UTC.

Thirdly, we use a transposition model to determine the plane of the
array (POA) irradiance, which is total irradiance received by a PV panel
based on solar angles and panel angles (see section 2.2).

25

Fig. 4. Illustration of wake losses as a function of wind speed.
Source: Based on Knorr [69].

30

The hourly POA irradiance (Ip) consists of direct (Id,-,,p), diffuse
(14;,,) and reflection (I, ,) components:
Ip =Idir,p+ Idif,p+Ir,p (15)

Depending on the panel tilt angle (§) and azimuth angle (Z,), the
three irradiance components can be determined via (Gulin et al., 2013):

14ir 5 €03(6)

dirp = m (16)

cos(0) = sin(a)cos(f) + cos(a)sin(ﬂ)cos(Zp -— ZS) 17)
1

Lyigp = ++05ﬂ1dif,h (18)

I.,= 1_QLSﬂ(Idir,h + Idif,h)Alb (19)
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Table 6
Mount configurations and corresponding heat transfer coefficients.

PV technology =~ Mount type Mount a b AT,  (°C)
Utility PV Glass-cell-glass Openrack -3.47 -0.0594 3
Rooftop PV Glass-cell-glass  Close roof —-2.98 -0.0471 1

Source: [25].

where « and Z, are solar altitude angle and azimuth angle; 6 is incidence
angle; Alb is surface albedo.

Lastly, we determine hourly RF of PV, considering efficiency losses
due to non-standard test conditions and the cell operating temperature
[25].

I
p
RF = <ISTC ) [1-&(Tyocr — Teen)| PR (20)
II’
Teeny = Tback + <I >ATcond 21
STC
Tyaer = Lexpl@m) 4+ 7 (22)

Where I g7 (1000 W/m?) is solar irradiance at standard test conditions
(STC); PR is the performance ratio to consider PV system losses, e.g.,
due to inverter losses, shading and dust. The PR is assumed to be 0.9 in
this study, which is the upper bound of today’s typical PV modules in
Germany [87]; T,,; and Tyocr (44 °C) are respectively cell operating
temperature and nominal operating cell temperature; ¢ is the tempera-
ture coefficient of power indicating the dependence of PV power on cell
temperature, which is —0.003 for the selected Sanyo HIP-225HDE1PV
module; T}, is module back surface temperature, which is a function
of empirical coefficients for convective heat transfer (b), ambient wind
speed at 2 m (v,,,) and ambient temperature (T); AT,,,, is conduction-
induced temperature change. AT,,,,, a and b depend on the materials
and mount configurations of the PV module. The assumed mount config-
urations for both utility PV and rooftop PV and corresponding empirical
heat transfer coefficients in this study are provided in Table 6.

2.4. Geographic aggregation

To avoid collinearity, utility PV and rooftop PV are aggregated into
a single “PV” asset in each grid cell based on the geographic potentials
of both technologies. Similarly, grid cell based VRE asset profiles are
also aggregated at the country or regional level for different analysis
purposes. We divide the 30 European countries into nine regions: Alpine
(AT, CH, IT, MT, SI), Baltic (EE, LT, LV), East (CZ, HU, PL, SK), France,
Iberia (ES, PT), Isles (GB, IE), Nordic (DK, FI, NO, SE), Southeast (BG,
CY, EL, HR, RO) and West (BE, DE, LU, NL). Where it is applicable,
the country or regional level VRE assets are further aggregated across
technology types. For instance, onshore and offshore wind assets per
country are aggregated into a wind asset, whilst wind and solar assets
can be aggregated into one asset as well to represent the underlying
country-wide technology mix. The aggregation is based on the share of
geographic potentials per technology in total potentials.

2.5. Statistical analysis

2.5.1. Statistics description

The statistical analysis characterises the rating factor time series per
VRE technology for the reference historic and target future periods and
to quantify the climate signals, i.e. the mean, sd, (Pearson) correla-
tion, and conditional probability of concurrent extreme low production
events. Based on spectral analysis, we decompose the original rating
factor time series of VRE assets into time series components at multiple
timescales ranging from hourly to yearly (see section 2.5.2). The sd and
correlation are also calculated for each component timescale.

10
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Being univariate statistics, the mean and sd of the rating factor time
series respectively measure the average output (which is also referred
to as the capacity factor) and output variability for each VRE asset. By
contrast, correlation is a bivariate measure describing the overall lin-
ear dependence structure between random variables. In the context of
VRE generation, correlation (or anticorrelation being the inverse of cor-
relation) has been widely used to gauge the temporal complementarity
between pairwise VRE assets. This is because (mathematically), a high
negative correlation implies a large potential to reduce the total vari-
ance of the combined outputs of the underlying assets. However, corre-
lation cannot capture the tail dependence between pairwise VRE assets,
which is the comovement of extreme VRE production events [1]. To il-
lustrate this, we plot the probability heat map of the quantile interval
of wind generation in Germany conditional on the quantile interval of
wind generation in France in Fig. 5.

Conditional on most quantile intervals of French wind generation,
there is a considerable spread of the probability distribution of German
wind generation. However, at the bottom and top 0.1 quantile inter-
vals, the distribution of German wind generation is heavily skewed to-
wards the lower and upper tail. This suggests a strong degree of tail
dependence. In this study, the tail dependence between VRE assets is
measured by the conditional probability of concurrent extreme low pro-
duction events (see section 2.5.3).

The four statistics are characterised for all climate simulations
named after the three GCMs. The capacity factor (CF) is characterised
for assets at grid cell level as well as at aggregated country level. The
other three statistics are characterised for assets at aggregated country
or regional level to avoid computational costs.

We only present and analyse the intermodel ensemble mean of the
characterised statistics in the Results section for dimension reduction
and best visualization of figures. This is in line with other studies (e.g.
Gernaat et al. [40]; Miller and Keith [77]). The ensemble mean enables
the quantification of the expected value or best estimate of the climate
signal, but it does not convey information regarding the uncertainty
and robustness of the climate signal. The latter can be captured by the
analysis of the ensemble spread, which is beyond the scope of this study.

2.5.2. Decomposition of VRE outputs at multiple time scales

The decomposition of time series into components at different mul-
tiple time scales/temporal frequencies usually requires spectral analysis
such as Fourier or Wavelet, which is computationally non-trivial. Here
we use a simple method adapted from Jerez et al. [60]. One main dif-
ference between Jerez et al. [60] and this analysis lies in the tempo-
ral resolution of the original time series, which is daily in Jerez et al.
[60] but hourly in this study (measured by rating factors). If we denote
the original hourly rating factor series as RF,, , , , with subscripts y, m,
d and h indicating the specific year, month, day and hour of the time
stamp:

RE, g = RE, + 8y + 6y + 6y man 23)
8ym = RF,, — RF, 24)
Oy ma = m — RF, (25)
Oymdan = REy man— m (26)

where R_Fy, Fym and RF,, , are yearly, monthly and daily mean of
the hourly rating factor series, 6, 8,,4 and é,, 4, are intra-annual
monthly deviations concerning the annual mean rating factor, intra-
month deviations concerning the monthly mean rating factor, and intra-
day hourly deviations concerning the daily mean rating factor.

Sy m> Oyma @and 8y, 4 , can be further decomposed into

Sym = b + (6, =5 ) @7
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Fig. 5. Probability heat map of quantile interval of wind generation in Germany conditional on the quantile interval of wind generation in France.

5y,m,d = 5m.d + <5y,m,d - 6m.d ) (28)

Oy mdh = Oman + (5y,m,d,h — O ) (29)

Where 5, , 6,4 and Sman are the interannual monthly mean of 6,
interannual daily mean of §, ,, 4, and interannual hourly mean of 6, ,, ; ;-
We can rewrite formula (23) as:

RFy,m,d,h = Fy + 5"' (5y,m - a) + 5m.d + <6y,m,d - 5m.a' ) + 5m.d,h
+ <5y,m,d,h = Sman ) (30)

Hence, formula (30) in essence decomposes the original whole
hourly series (WHS) into the sum of the year-to-year (Y2Y) noise term
denoted as RF,, the intra-annual monthly (MIA) cycle denoted as 6, ,

the month-to-month noise term (M2M) denoted as (5, ,, — 5, ), the intra-

month daily (DIM) cycle denoted as §,,, , the day-to-day noise term
(D2D) denoted as (8,4 — 6,4 ), the intra-daily (HID) cycle denoted as

a1 » and the hour-to-hour noise (H2H) denoted as (6, 4.n = Sp.a.n ):

WHS = Y2Y + MIA + M2M + DIM + D2D + HID + H2D (31)
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For illustration purposes, the WHS series for wind and solar assets
aggregated at the EU level is decomposed into information components
at different time scales in Fig. 6. Decomposition is helpful to identify
cyclic patterns hidden in the original series and potential spatiotemporal
complementarity between assets.

Since the decomposed components are independent of each other,
the variance (VAR) of the WHS can also be decomposed into the sum of
VAR associated with different components:

VARy s = VARy,y + VAR 14+ VAR +VARp \ + VARpyp
+VARyp+ VAR (32)

For each component, we calculate the normalized standard devia-
tion for country-level wind and solar assets to identify the timescales
which dominate hourly output variability of the underlying assets. The
normalization is based on the mean of the original RF series. Further-
more, the cross-correlation between wind and solar assets aggregated at
the regional level is also quantified for each timescale.

2.5.3. Tail dependence

Tail dependence describes the comovement of extreme value events
in the tail of the distributions of random variables. Generation profiles of
two or more VRE assets can exhibit tail dependence in the lower and/or
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Time series decomposition of wind and solar asset at EU-aggregated level
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Fig. 6. Time series decomposition of wind and solar assets at the EU level.

upper tail [23]. The lower-tail dependence is of particular relevance to
renewable energy droughts, which are concurrent extreme low produc-
tion events of VRE assets. Although Otero Felipe et al. [83]; Raynaud
[86]; Ohlendorf and Schill [81] have characterised country-wide his-
toric extreme low production events of single or multiple VRE technolo-
gies on a univariate basis for selected European countries, they might be
of limited usage to understand renewable energy droughts in intercon-
nected power systems. This study represents the first attempt to assess
the intercountry risk of renewable energy droughts and the impact of
climate change on such risk. For simplicity and dimension reduction,
we focus on two bivariate cases of concurrent extreme low production
events. The first case concerns the cross-border lower-tail dependence
between each country and its directly interconnected neighbours, and
the second case the EU-wide low-tail dependence between each country
and the rest of Europe. Both cases are investigated for solar alone, wind
alone, and the mix of wind and solar.

We resort to the conditional probability of concurrent extreme low
production events (P(X < x|Y <y)) to measure the lower-tail depen-
dence, where X and Y denote output variables associated with any two
paired VRE assets. For instance, in the cross-border case of concur-
rent extreme low production events for solar, X represents a country-
aggregated solar asset and Y represents the other solar asset aggregated
at the level of all neighbouring countries. x and y denote the fixed thresh-
old levels defining extremely low production events. Here we define ex-
treme low production events as VRE outputs below the 0.1 quantile level
of the output distribution, similar to Otero Felipe et al. [83]. The cal-
culation of the conditional probability of concurrent extreme low pro-
duction events is based on the empirical copula function. The copula
is a joint distribution function characterizing the dependence between
random variables but independently from their corresponding marginal
distributions [83]. In the bivariate case, the joint cumulative distribu-
tion of random variables (X and Y) can be described by a copula function
C() that links their marginal cumulative distribution functions (Fy and

Fy) together:
Fxyy(x,y))=P(X < x, Y <y)= C(Fx(x), Fy(Y)) (33)

The marginal cumulative distribution functions transform the ran-
dom variables X and Y into uniformly distributed margins on the [0,1]
interval, which are denoted as U=Fy(X) and V=Fy (Y).
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We use historic daily wind generation in Germany and France (which
represent X and Y) to exemplify this transformation in Fig. 7. 7a) shows
the scatter plot and histograms for the original random variables X and
Y, and 7b) for the transformed cumulative margins U and V.

According to Sklar’s theorem, the copula function is unique if both
U and V are continuous.

This means that formula (33) can be rewritten into

Fyy(x.y) = C(UX), V() = Cw, v) = F(Fy' @), F;' )

Following Bayes’s theorem, the conditional probability of concurrent
extreme low production events below fixed threshold margins can be
calculated based on the copula function:

PU< u, V < v _ C(u, v)
PV<o T PV<o)

Recall that we defined extreme low production events using the 0.1
quantile level as threshold conditions. Consequently, u = v = P(V <
v)=0.1. Using the empirical copula function, it is possible to estimate
the empirical conditional probability of concurrent extreme value events
between two VRE assets. To avoid non-continuousness in the marginal
distribution of hourly solar RF series due to a large portion of zeros, we
aggregate hourly VRE RF series into daily series.®

Based on the estimated conditional probability, we also calculate the
expected annual number of critical hours (NoC) of concurrent extreme
low production events in each country for the cross-border and EU-wide
bivariate cases:

(34)

PU <ulV <v)= (35)

NoC =0.1-8760-P(U <0.1|V <0.1) (36)

8 Alarge portion of zeros in daily solar production series still exist for Norway
and Finland, because the two countries include relatively large areas with solar
potentials close to the Arctic Circle with polar nights. This violates the assump-
tion to build up a copula model, which gives NA results. To solve this issue, for
these two countries only we exclude winter months (from October to March) of
the daily series to estimate the cross-border and EU-wide cases of conditional
probability of concurrent extreme low solar production events. This might un-
derestimate the conditional probability, because solar drought events in both
countries are expected to be more frequently in winter months. While for other
countries, the conditional probability is estimated for the daily series including
both winter and summer.
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Fig. 8. Spatial distribution of geographic potentials of VRE assets across Europe.

3. Results
3.1. Geographic potentials

The geographic potentials for grid cell based VRE assets across Eu-
rope are shown in Fig. 8. Geographic potentials reflect the quantity as-
pect of VRE resources in terms of maximum installable capacity consid-
ering geospatial constraints and land use suitability.

For onshore wind, France, Spain, Germany, Italy, Poland, the UK and
Romania have the largest potentials in Europe. Together they account
for more than half of total onshore wind potential in Europe (2032 GW).
The total offshore wind potentials amount to 918 GW. They are mainly
concentrated in the North Sea, the Baltic Sea, the Irish Sea, the English
Channel and the Adriatic Sea. Despite a large area, the Mediterranean
Sea and the Black Sea are barely suitable for (non-floating) offshore
wind development due to the threshold depth of 60 m. The distribution
of solar potentials is highly correlated to the urban area for rooftop PV
installation. Due to abundant suitable areas for utility PV development,
France, Germany, Italy, Spain and Poland lead in solar potentials. The
combined share in total European solar potentials (3840 GW) is above
50%.
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Owing to policy support and cost reduction driven by technolog-
ical learning and economies of scale, the deployment of VRE capac-
ity has increased significantly in Europe over the past two decades.
At an aggregated Europe level, as of 2021 the currently installed ca-
pacities of onshore wind, offshore wind and solar are 192 GW, 28
GW and 175 GW [58], accounting for 9.5%, 3.1% and 4.5% of to-
tal potentials of respective technology. For comparison, we present in-
stalled capacity and untapped potentials per technology at the coun-
try level in Fig. 9. For most countries, there remain large potentials
for VRE development. The highest exploitation rates of onshore wind
are found in Sweden (25.2%), Netherlands (20.8%), and Luxemburg
(20.8%); Netherlands (19%) and Malta (13.6%) of solar. As the front-
runner for investment in onshore wind and solar, Germany has only
exploited 33.7% and 11.3% of its potentials, respectively. The ex-
ploitation rates of offshore wind at the country level are relatively
small. They hardly exceed 3% except for Belgium (68.2%), Germany
(11.3%), UK (8.3%). The UK leads offshore wind development in Eu-
rope, but more than 91% of its potential are yet untapped. By con-
trast, due to small total potentials (3.3 GW), the remaining poten-
tial for Belgium is only 1.1 GW for developing new offshore wind

capacity.
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3.2. Capacity factor

The historic (1990-2010), future (2045-2055) and relative climate
signal (in terms of relative change expressed in decimal fraction) of CF
for wind and solar assets across Europe are presented in Fig. 10. The
labels represent corresponding country-level aggregated data. For com-
parison purposes, the historic CF based on ERA data is also shown. The
historic CF is in close agreement with the ERA-based historic CF at both
grid cell level and country level. Three noticeable results are identi-
fied. First, the maximum difference between the two is less than 2 p.p.
and 1 p.p. respectively for wind and solar assets. This suggests that cli-
mate models can replicate CF well under historic climate conditions.
Second, The CF as average normalized outputs per unit of installed ca-
pacity reflects the quality aspect of VRE resources. It is shown that the
best-quality wind resources in Europe are located in the North sea, the
Baltic sea, the Irish Sea, the English Channel and surrounding coastal
areas. This can be ascribed to the large pressure difference between
the semipermanent Azores High and Icelandic Low, which moves the
weather fronts eastward across the ocean [75]. The worst-quality wind
resources are located along the major mountains, because of the wind
channelling effect in deep valleys [75]. At the country level, Denmark,
the Netherlands and the UK have the highest average capacity factor
(>0.45). By contrast, the average quality (<0.18) of wind resources in
Italy and Spain is relatively poor, despite large potentials. As for solar,
the CF depends on the local latitude which reflects the difference in so-
lar altitude angle. The highest and lowest CF are respectively found in
the South European countries and Nordic countries. Thirdly, the climate
signal in terms of the relative difference in CF between historic and fu-
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ture periods seems overall small in magnitude, especially at aggregated
country level. The CF of wind decreases in the major part of Europe,
except for the Nordic region, the Balkan region and Central Italy. The
magnitude of the country-level CF climate signal is hardly above 0.03,
except for a large reduction at 0.08 in Switzerland. The country-level CF
climate signal for solar is smaller than that for wind. A slight decrease
(<0.02) in solar CF can be observed in Northern and Central Europe.
This suggests the impact of climate change under RCP 2.6 on average
solar outputs is rather limited.

3.3. Raw standard deviation

Fig. 11 shows the spatial distribution of the historic, future and rel-
ative climate signal of hourly raw sd for wind and solar assets. The con-
sistency between the climate model-based and the ERA-based raw sd for
the same historic period again suggests a fair performance of the climate
models in capturing the volatility of VRE supply. The climate signal at
the country level is generally small in magnitude for both wind and so-
lar. It hardly exceeds 0.02, with Switzerland (0.05) being the exception.

The spatial distribution of the raw sd follows a comparable pattern
to that of the CF, indicating a positive level of correlation. This can be
illustrated by the scatter plot of raw sd versus CF for VRE assets at the
grid cell level (see Fig. 12). The raw sd and CF respectively measure the
(volatility) risk and (expected) hourly return of VRE assets from the per-
spective of power system operation. Similar to that for financial assets,
a tradeoff exists between risk and return. The higher the capacity factor,
the higher volatility in the VRE generation profile and hence the greater
challenges for grid balancing. Unlike onshore wind assets spreading the
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entire range of the risk-return profile, the majority of offshore wind as-
sets can be characterised as high-risk and high-return. By contrast, solar
belongs to the low-risk and low-return asset group due to the diurnal
production pattern. Compared with ERA-based sd, the spread of climate
model-based historic sd is relatively narrow across VRE assets at the
same level of CF. The same risk-return tradeoff remains for the scatter
plot of relative signals with most assets positioned at the first and third
quadrants. Except for a limited number of outliers, the signals for both
CF and sd are bounded by +0.1.

3.4. Normalized standard deviation at multiple timescales

Fig. 13 demonstrates the country-level normalized sd of the origi-
nal whole hourly time series (WHS) and its component time series at
different timescales for wind. The normalized sd measures the relative
volatility with respect to the mean. Regardless of the timescale, it can be
unanimously found that the WHS variability of wind is mainly driven by
the variability of the noise terms at D2D and H2H timescales. This means
that integration challenge for wind is mainly related to short-term flex-
ibilities, ramping capabilities, and daily & sub-daily energy storage re-
quirements of the power system. Across all timescales, the discrepancy
in normalized sd seems to be small between ERA and climate models
for the historic period. The climate signal is also small, which is capped
by +0.1. Notably, the normalized sd decreases over the D2D and H2H
timescales close-to-uniformly across Europe, but increases over the DIM
and HID timescales. Less seasonal variation in wind output can be ex-
pected for the Nordic countries exclusively. This is demonstrated by the
decreased normalized sd over the MIA time scale.

In the case of solar, the HID and MIA cycles dominate the WHS vari-
ability (see Fig. 14). These two timescales are of respective relevance
to the sub-daily system flexibility and seasonal energy storage require-
ments. Despite a small magnitude (< 0.1), solar variability decreases in
most European countries at all timescales with DIM and MIA being the
exception. The increased seasonal solar variation at the MIA time scale
occurs mainly in the Nordic countries, France, Germany, Spain and Ro-
mania. This suggests the increased need for seasonal storage in these
countries.

3.5. Correlation at multiple timescales
3.5.1. Country-wide wind-solar correlation

The country-wide wind and solar correlation at different timescales
are presented in Fig. 15. Based on historic correlation (calculated
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from ERA data alone), a negative correlation (anticorrelation) between
country-wide wind and solar outputs prevails over Europe. The strength
of the anticorrelation depends on the decomposed timescale and the
specific country. Noticeably, a very strong anticorrelation (< —0.6) ex-
ists between the seasonal cycles of wind and solar at the MIA timescale,
suggesting a large potential for technological complementarity that can
be exploited to reduce seasonal variation of VRE outputs. This is particu-
larly useful for countries that lack seasonal energy storage options (e.g.,
reservoir storage hydropower plants). The strong MIA anticorrelation
can be explained by the windy winters of short daytime alternating with
the calm summers of longer daytime [75]. Consequently, in a relative
sense, it is less pronounced for those countries located in South Europe.
This seasonal complementarity is further reinforced by the anticorrela-
tion at the M2M timescale. At other timescales, we also found an over-
all negative but weaker wind-solar correlation. This indicates daily and
hourly It is also consistent with earlier studies, e.g., Schindler et al. [91];
Miglietta et al. [75]; Jerez et al. [60]. Interestingly, at the HID timescale
both moderate positive and negative correlations are observed. This im-
plies the presence of regional-specific diurnal wind patterns. The pos-
itive correlation mainly exists in countries with large mountain areas
and extensive coastlines, due to e.g. foehn and sea breeze [75].

Except for the HID timescale, the climate models show overall good
agreement with the ERA data in the determined historic country-wide
wind-solar correlation. The correlation is moderately or strongly pos-
itive in the climate model-based case at the HID timescale. This in-
dicates the remaining bias of the climate model and its unstastifying
performance in capturing the sub-daily comovement between climate
variables. Recalling that the original temporal resolution of the climate
model is 3 hourly. The pre-processing that linearly interpolates the data
to hourly might also contribute to the bias.

The climate signal of country-wide wind-solar correlation is rela-
tively small in magnitude (< 0.2) across all timescales except for Y2Y,
and the sign of correlation hardly changes. This suggests a rather limited
mid-term impact of RCP 2.6 on the country-wide wind-solar correlation.
At the Y2Y timescale, the largest climate signal (~0.4) is found in the
UK with the sign of correlation inverting from negative to positive. This
implies a non-negligible challenge for the long-term system planning to
manage the interannual variability in VRE supply.

3.5.2. Cross-regional wind-solar correlation

The cross-regional correlation matrix enables the investigation of
wind-solar technological complementarity beyond the country border.
Fig. 16 presents the cross-regional correlation at the WHS timescale as
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well as timescales corresponding to the cycle components of VRE gen-
eration profiles. The x-axis and y-axis respectively represent wind and
solar at an aggregated regional level. Similar to the country-wide corre-
lation, the cross-regional correlation between the cycle components of
wind and solar outputs is overall negative based on ERA data. The most
pronounced anticorrelation is found at the MIA timescale. In particu-
lar, wind in the Baltic, Isles, Nordic, and West regions strongly comple-
ments solar in all regions (with an anticorrelation above 0.9). The large
potential of seasonal technological complementarity can save demand
for seasonal storage. This brings about co-benefits for the EU’s ongo-
ing efforts in establishing a European internal electricity market [31],
which requires large-scale investments in the pan-European transmis-
sion network. We also observe moderate wind-solar anticorrelation is
also observed at the HID timescale between certain regions, notably be-
tween wind in France and solar in other European regions, and between
wind in Iberia and solar in the East, Baltic and Balkan. This suggests di-
urnal technological complementarity. Except for the HID timescale, the
climate model-based correlation for the other cycle components tends
to be consistent with that based on ERA data. In addition, the climate
signal of cross-regional correlation tends to be small, and it hardly ex-
ceeds +0.1. This suggests limited impacts of climate change under RCP
2.6.

For the noise components, the cross-regional wind-solar correlation
is presented in Fig. 17. Although at the Y2Y and M2M timescales, mod-
erate correlations can be observed between certain regions, for the other
timescales the wind-solar correlation of the noise components is much
weaker. Unlike the cycle components that tend to have a negative cross-
regional correlation, at the Y2Y and M2M timescales the sign of correla-
tion for the noise terms is less distinct depending on the paired regions.
For instance, a moderate anticorrelation exists between wind in Iberia
and solar in France and Alpine at the M2M timescale. This can rein-
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15. Historic, future and climate signal of country-wide wind-solar correlation.

force the wind-solar seasonal complementarity at the MIA timescale,
By contrast, the moderate positive correlation between wind in Nordic
and solar in Iberia at the M2M weakens the seasonal complementarity.
From a system planning perspective, wind in France seems to be an ideal
investment option, as its generation profile tends to be negatively cor-
related with solar in other European regions at almost all timescales.
Once again, consistency is observed between the cross-regional corre-
lation based on the climate model and that is based on ERA data. The
climate signal of the cross-regional correlation seems negligible for the
noise components at the M2M, D2D and H2H timescales. As for the
Y2Y timescale, some moderate climate signals can be observed for a
few paired regions, e.g., between wind and solar in France and Iberia.

3.6. Conditional probability of concurrent extreme low production events

3.6.1. Cross-border concurrent renewable energy drought events

Fig. 18 presents the historic, future and climate signal of the condi-
tional probability of cross-border concurrent renewable energy drought
events across Europe for wind, solar and the mix of wind and solar.
The cross-border conditional probability indicates the likelihood of re-
newable energy droughts in each country given the occurrence of re-
newable energy droughts in neighbouring countries. The labels indicate
the expected annual number of critical hours per country when concur-
rent renewable energy droughts occur. First, the climate model seems
to simulate very well the historic climate based on the ERA data. Sec-
ondly, the climate signal of renewable energy drought events under RCP
2.6 seems also marginal, as the conditional probability change never
goes beyond +0.05. Thirdly, the susceptibility to cross-border renew-
able energy drought events depends on the country and the VRE tech-
nologies. In the case of wind alone, Latvia, Estonia, Bulgaria, Germany,
and the Netherlands are most susceptible to renewable energy droughts
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with a conditional probability above 0.5. The left tail of wind pro-
files between these countries is apparently highly dependant on those
of their interconnected neighbours. The cross-border renewable energy
drought risk for solar alone is larger due to high synchronicity in so-
lar profiles between neighbouring countries. The mix of wind and so-
lar seems to moderately reduce the cross-border conditional probabil-
ity of renewable energy drought events compared to solar alone, sug-
gesting a benefit of technological diversification. However, compared
to wind alone, the benefits of a mix are more observable in the coun-
tries in the north half of Europe where wind potentials dominate the
share of the technology mix. For the mixed case, cross-border renew-
able energy drought events occur most frequently in countries located
in the Baltic region and Southeast Europe. Hence, these countries may
need more backup capacity to manage the tail risk associated with re-
newable energy droughts if power exchange is only allowed with direct
neighbours.

3.6.2. EU-wide renewable energy drought events

The analysis of the EU-wide renewable energy drought events (see
Fig. 19) is based on the copperplate assumption that all European coun-
tries are perfectly interconnected. The EU-wide conditional probability
indicates the likelihood of renewable energy droughts in each country
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. Historic, future and climate signal of cross-regional wind-solar correlation (cycle components).

given the occurrence of renewable energy droughts in the rest of Eu-
rope. The labels indicate the expected annual number of critical hours
of concurrent EU-wide renewable energy droughts. Similar to the cross-
border case, the EU-wide conditional probability per country based on
the climate data is close to that based on the ERA data. The climate
signal of the EU-wide conditional probability is negligible. Compared
with the cross-border case, the EU-wide conditional probability of re-
newable energy drought events for most countries is reduced for wind,
solar and the mix of wind and solar. This means that geographic diver-
sification is helpful to reduce tail risk of concurrent renewable energy
droughts. However, even under the copperplate assumption, the EU-
wide conditional probability remains pronounced and non-negligible.
As in the case of mixed wind and solar, it ranges from 0.20 to 0.56,
depending on individual countries. Therefore, the EU-wide conditional
probability of concurrent renewable energy droughts can be interpreted
as a non-diversifiable systemic risk. To address this systemic risk, suffi-
cient flexibility resources other than interconnectors are required. More-
over, we also find that for a limited number of countries the EU-wide
conditional probability is slightly higher than the cross-border case. An
example is solar energy droughts in France. This is because the left tail
distribution of solar in France is more synchronous to that at the aggre-
gated EU level. A similar situation is observed for Poland in the mixed
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Fig. 17. Historic, future and climate signal of cross-regional wind-solar correlation (noise components).

case, despite a small difference between the cross-border and EU-wide
conditional probabilities.

4, Discussion
4.1. Limitations and caveats

Due to data and scope, a few limitations can be identified in this
study. Here we discuss the most prominent limitations and potential
caveats for the interpretation of the results.

4.1.1. Data consistency

This study relies on a large number of data from multiple sources.
They can be grouped into two main streams: climate data and meteoro-
logical reanalysis data to characterise generation profiles of VRE supply
and associated statistical measures; geospatial data for determining geo-
graphic potentials for VRE installation. The use of data based on multiple
sources can give rise to data consistency issues.

¢ Geospatial data

Data consistency is less likely to be a concern for the used geospatial
data, because they mainly include topographic and bathymetric infor-

mation and land cover data that are unrelated to each other. The mis-
match between geographic boundaries of polygon-based shapefiles (e.g.,
maps of terrestrial territory and exclusive economic zone) and grid-cell
based raster data (e.g., elevation and land cover data) can introduce
potential error propagation in geospatial analysis, but the impact is ex-
pected to be marginal due to high-resolution of the data.

e Climate data

Another source of data inconsistency results from the inherent lim-
itations of climate data simulated from the combination of GCM and
RCM. First, climate data consisting of standard variables is only bias-
adjusted on the daily scale while uncorrected sub-daily anomalies are
superimposed. The bias-adjustment procedure uses meteorological re-
analysis data as the reference, which increases consistency between
the two datasets. Since we have identified an overall agreement be-
tween key statistical measures of VRE profiles based on climate data
and reanalysis data for the same historic period, the remaining unad-
justed biases are relatively small. However, the limitations of the bias
adjustment at a sub-daily time scale become apparent when analysing
the cross-regional wind-solar correlation characterised at a sub-daily
hourly timescale (see section 3.5). A moderate or positive strong cor-
relation is found in the climate data-based case, while a negative cor-
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Cross-border conditional probability of concurrent extreme low production events
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Fig. 18. Historic, future and climate signal of conditional probability for cross-border energy drought events.

relation is predominantly observed based on the more accurate re-
analysis data. This suggests an unsatisfied performance of the climate
model in capturing the sub-daily comovement between climate vari-
ables. Secondly, to obtain hourly VRE time series, the climate data fed
into the energy conversion model is linearly interpolated from the orig-
inal 3-hourly resolution to 1-hourly resolution. This might also induce
bias with regard to statistical measures that are evaluated at sub-daily
timescales. Finally, unlike reanalysis data, climate data only offers lim-
ited standard variables that can be directly used for energy conver-
sion. For instance, the only variable relevant to wind energy conver-
sion is surface wind speed at 10 m. Consequently, assumptions with
regard to surface roughness or shear exponent must be made to ex-
trapolate wind speed to turbine hub height. This can lead to a poten-
tially large error propagation due to the cubic relation between wind
speed and wind power. This study derives site-specific shear exponents
based on a regression between two wind speeds at 10 m and 100 m
of (historic) reanalysis data. Despite being more accurate than other
simplistic assumptions, the approach presumes the same static shear
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exponents to be persistent over the future. Overcoming these limita-
tions of climate data calls for the development of better bias-adjustment
methods, increased temporal resolution of climate modelling, and the
expansion of standard climate variables within the climate modelling
community.

4.1.2. Limited ensemble size and intermodel uncertainty

Ideally, a large set of climate models would be used to simulate cli-
mate projections to capture the intermodel uncertainty of climate sig-
nals. Due to the computation costs of both RCMs (for downscaling) and
the energy conversion model, the ensemble size of climate projections
and the selected length of time periods (10-20 years) were therefore
limited for the impact assessment. While the climate projections driven
by 3 different GCMs were selected to cover the spread of climate signals
within the given RCP 2.6 as good as possible, the limited ensemble size
may contribute to uncertainties in the results. As the aim of this study is
to provide a best estimate of climate signals in terms of the intermodel
ensemble mean rather than quantifying the intermodel uncertainty, the
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EU-wide conditional probability of concurrent extreme low production events(intermodel mean)
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Fig. 19. Historic, future and climate signal of conditional probability for EU-wide renewable energy drought events.

limited ensemble size can be reasonably justified. Another uncertainty
source comes from the relatively shorter selected length of time periods,
which may open up a potential influence of the internal variability of
the determined climate signals.

4.1.3. Conversion efficiency degradation and improvement

One merit of the present study lies in the comprehensive energy con-
version model developed for impact assessment, which enables a more
realistic determination of VRE generation profiles compared to other
studies. For instance, the wind energy conversion factors into location-
specific power law profiles of wind speed, elevation-adjusted single
turbine power curves, multi-turbine power curves representing spatial
propagation of wind speed, and wind speed-dependant wake losses. As
for solar PV, both location-specific empirical panel angles and efficiency
losses due to non-standard operating conditions are considered. Despite
a large number of input parameters, the application of the detailed en-
ergy conversion model can be repeated for other regions of the world.
This is because all inputs are based on the standard variables of climate
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data, open access meteorological reanalysis data and geospatial data,
and reasonable assumptions consistent with the literature. However, the
model does not capture every factor affecting energy conversion. A lim-
itation of the model is that we assume a constant performance of VRE
technologies under standard test conditions over the entire lifetime. On
the one hand, the efficiencies of both wind turbines and solar PV dete-
riorate with age, with an average annual degradation rate of 1.6% per
year [94] and 0.8% per year [62] respectively. Hence, VRE generation
determined in this study may be overestimated. On the other hand, the
energy conversion model is built upon representative commercial mod-
ules of present-day VRE installations. Assuming potential efficiency in-
creases with technological improvement, we may underestimate future
VRE generation. Exploring the joint impacts of ageing-related degrada-
tion and technological improvement on VRE generation is important to
understand the lifecycle economics of VRE technology, which can be
recommended for future research. However, they are unlikely to affect
the main results of this research with regard to the impact of climate
change on VRE generation.
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4.1.4. Lack of future land cover data

Geographic potentials of VRE assets depend on suitable areas per
land cover class. This study does not consider land cover change and its
impact on future geographic potentials. The same geographic potentials
based on the historic land cover map are assumed to be constant over
time. Both climate and socioeconomic changes can affect land use pat-
terns and land cover [26]. Integrated impact assessment models have
already been used to project future land cover development, despite a
relatively low resolution and limited land cover classes. Further research
is recommended to explore the evoluation of geographic potentials in
relation to land cover change over time.

4.1.5. Methods for geographic aggregation

Depending on different analysis purposes in this study, VRE profiles
are aggregated from grid cell level to country or regional level for a sin-
gle VRE technology or a mix of VRE technologies. Geographic potentials
of VRE assets per grid cell are used as weights to characterise a repre-
sentative “average” generation profile within a geographic boundary.
This implies the deployment and allocation of VRE capacity are assumed
to be proportional to the maximum installable capacity per VRE asset
across space and technology. This approach is justifiable in absence of
pre-specified information regarding future installed capacity per VRE as-
set. However, as long as the total potentials are not fully tapped, other
capacity allocation options are plausible. For instance, investors can pri-
oritize VRE investments at sites with the highest net profits or capacity
factors. System operators may prefer the deployment of VRE capacity
close to the demand centre. There also exist policy scenarios prescrib-
ing the optimal share of each VRE technology in the future capacity mix
per European country. Future studies can be carried out to investigate
the impact of alternative capacity allocation methods on the aggregated
generation profile.

4.1.6. Size of VRE technologies, demand profile and storage

One delineation of this study is that the size (installed capacity) of
VRE technology in the mid-term future European power system is not
determined, since we only characterize VRE supply on the basis of per
unit of installed capacity. Being not the core focus of climate impact
studies concerning VRE supply, the size of installed VRE capacity is of-
ten either disregarded [15,21,24,39,52,53,110], assumed at frozen his-
torical level [98,100], or prescribed at a fixed level from other scenario
studies [5,60]. Determining the cost-optimal size of VRE capacity is im-
portant for planning and operation of the power system, but it also de-
pends on many other factors not considered in this study.

As the power system must ensure grid balancing between supply
and demand, both the volume and pattern of electricity demand may
strongly affect the technology mix of electricity supply [65]. In particu-
lar, due to limited load-following capability, the size and uptake of VRE
can be constrained by the demand pattern. Bossmann (2013) found that
electricity demand with higher diurnal variations mainly increases the
need for dispatchable generation capacity instead of VRE capacity to
meet peak demand. The reliable projection of long time series of fu-
ture demand profiles is of high relevance but a challenging research
area, because multiple factors affect the evolution of both the magni-
tude and pattern of electricity demand over time. They include socio-
economic development (e.g. population, urbanization, gross domestic
product), energy efficiency improvements, behavioural change for elec-
tricity saving, electrification trend of end-use sectors (e.g. transport with
electric vehicles, space heating & cooling with heat pump and air condi-
tioning) and development of electrofuels [66,76]. Electrification further
increases the dependency of electricity demand on the variability and
change of climate conditions, because both heating and cooling demand
is a function of ambient temperature and solar irradiance. The rising av-
erage temperature also leads to less heating in winter, but more cooling
in summer [89]. Meanwhile, given the increasing penetration of smart
metering and real-time pricing, electricity demand is also expected to
be more flexible and price-responding [27,54]. Numerous studies have
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projected future electricity demand at various geographic scales, but
none have considered these factors in a comprehensive manner. Many
of them simply scale historic demand patterns to a projected or extrapo-
lated future demand level, disregarding changes in demand patterns [6].
Zappa and van den Broek [111], Bobmann and Staffell [6], Bossmann
et al. [10], and Staffell & Pfenninger [96] have explored the structural
change of demand patterns in relation to electrification and/or energy
efficiency measures, but they do not consider climate change. Castillo
et al. [16], Isaac and van Vuuren [59], Zhang et al. [112], and Fan
et al. [37] have included the average impact of climate change to project
electricity demand, despite a low spatiotemporal resolution which is in-
sufficient to generate chronological hourly demand profile. We suggest
scenario-based sector-specific bottom-up studies to further investigate
this area and associated uncertainties. For instance, the framework com-
bining shared socioeconomic pathways (SSPs) and representative con-
centration pathways (RCPs) used by the integrated assessment models
(IAMs) community [105] seems promising to explore the scenario space
of plausible demand profile projections.

The size and uptake of VRE capacity can also be increased by comple-
mentary storage technologies, such as pumped storage hydropower, bat-
tery and hydrogen storage [41]. This is because energy storage smooths
out the fluctuations of VRE outputs and improves the load-following ca-
pability of VRE at different timescales. However, determining the cost-
optimal full technology mix (including VRE, storage technologies, and
dispatchable generation technologies) in a decarbonized future power
system and examining its reliability requires detailed modelling of the
power system in terms of capacity expansion and economic despatch.
It is also dependant on many uncertain factors, such as future de-
mand profile, fuel price, carbon price, and cost development of dif-
ferent power generation and storage technologies. Studies exist using
the power system model to explore future technology mix, but they are
often based on historical VRE generation profiles [14,65,111], use in-
consistent VRE generation and demand profiles corresponding to dif-
ferent weather years [104], or ignore interannual variability [12,49].
This points out new directions for future research. Our analysis pro-
vides essential inputs for the power system modelling in terms of VRE
profiles characterised under future climate conditions. The strong wind-
solar seasonal complementarity at the cross-regional level identified in
this study also provides a rationale to develop strategies optimizing the
sites of VRE assets, which serves as an alternative non-technological op-
tion to seasonal storage technologies (e.g., reservoir storage hydropower
plant, hydrogen storage) for managing the seasonal fluctuations of VRE
supply. The relative pros and cons in terms of costs and benefits can be
investigated through power system modelling in future studies.

4.2. Comparison with other studies

Since most climate impact studies focus on the projected change of
average VRE production, we only compare the results with other studies
in this regard. We find an overall reduction in average wind and solar
production for most of Europe between the 1990-2010 period and the
2045-2055 period. The relative change of average VRE production is
rather limited in magnitude at the country level, which is within +3%
for wind (except for Switzerland) and +2% for solar. However, a di-
rect comparison with other studies remains difficult. This is because
only a limited number of studies investigate the mid-term impact of cli-
mate change on European VRE supply under RCP 2.6 or comparable
warming conditions. amongst these studies, our findings corroborate
with Kozarcanin et al. [71] and Tobin et al. [98] for both wind and
solar in terms of directions and strengths of changes, and Gao [39] for
solar. Nevertheless, our results also seem to disagree with others. For
instance, Gernaat et al. [40] and Hou et al. [53] estimated an overall
increase in solar generation across Europe. Hosking et al. [52] found
wind outputs increase for the majority of Europe, with the greatest in-
crease in the UK (up to 10%) but a negligible decrease in the South.
The discrepancy between studies might also be explained by different
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GCM-RCM combinations for climate simulation and levels of detail of
the energy conversion model used. This calls for better harmonization
of climate scenario development, energy conversion method and other
key assumptions in future studies.

5. Conclusion

This paper assessed the geographic potentials for VRE technologies in
Europe, considering multiple spatial constraints and land cover classes.
The total potentials for onshore wind, offshore wind and solar are 2032
GW, 918 GW and 3840 GW, respectively. Accounting for more than
half of the total potentials in Europe, France, Spain, Germany, Italy,
Poland, the UK and Romania have the largest potentials for onshore
wind development. Offshore wind potentials are mainly concentrated in
the North Sea, the Baltic Sea, the Irish Sea, the English Channel and the
Adriatic Sea. Despite a large area, the Mediterranean Sea and the Black
Sea are barely suitable for (non-floating) offshore wind development due
to a sea depth above 60 m. The distribution of solar potentials is highly
correlated to the urban area for rooftop PV installation. With abundant
suitable areas for utility PV development, France, Germany, Italy, Spain
and Poland lead in solar potentials. The already installed capacities of
onshore wind, offshore wind and solar as of 2021 in Europe are 192
GW, 28 GW and 175 GW, which account for 9.5%, 3.1% and 4.5% of
total potentials of respective technology. Therefore, there remain large
untapped potentials for VRE development.

Based on a comprehensive energy conversion model, this study also
characterised the historic, future, and projected changes of European
VRE supply under RCP2.6 from aspects of average production, produc-
tion variability, spatiotemporal complementarity, and risk of concurrent
renewable energy droughts.

We find an overall reduction in average wind and solar production
for most of Europe between the 1990-2010 period and the 2045-2055
period, except that wind increases in Nordic countries and solar in-
creases in Northwest Europe and the Balkans. At the country level, the
climate signal of average production is rather limited in magnitude. The
relative percentage change for wind is within +3% (except for Switzer-
land) and +2% for solar. Besides average production, the projected mid-
term changes in other aspects of VRE supply are also relatively small.
In other words, the expected impact of climate change on European
VRE supply is less of a concern if we strictly follow a Paris-proof emis-
sion reduction pathway. This adds another rationale for policymakers
to support early and stringent climate change mitigation efforts.

Based on a spectral analysis, we demonstrate that the variability
of hourly wind generation series is mainly driven by the day-to-day
and hour-to-hour variations, whilst intraday hourly and intra-annual
monthly cycles dominate the variability of hourly solar generation. The
same analysis also enables the identification of multi-timescale tech-
nological complementarity between wind and solar assets at the cross-
regional level. The seasonal cycles of wind and solar exhibit strong com-
plementarity, which hold under both historic and future climate con-
ditions. This is indicated by an anticorrelation ranging between —0.6
and —0.9, depending on paired regions. Effectively harvesting wind-
solar complementarity can mitigate the source variability of VRE out-
puts at the intra-annual monthly timescale and provides an alternative
option to seasonal storage. It requires efforts from policymakers to ac-
celerate the development of pan-European transmission infrastructure
and harmonise the coordination of cross-border planning and siting of
VRE deployment, which is also consistent with the EU’s policy objective
to establish the internal electricity market.

Furthermore, the intercountry risk of concurrent daily renewable en-
ergy drought events was investigated, which hardly changes between
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the investigated historic and future periods. In the cross-border case
where energy exchange is exclusively between each country and its
neighbouring countries, the risk of solar droughts is large over the en-
tire Europe due to high synchronicity in solar profiles. Technological
diversification through mixing solar with wind can moderately reduce
the renewable energy drought risk. For the wind-solar mix, countries lo-
cated in the Baltic region and Southeast Europe are most susceptible to
cross-border renewable energy droughts with a conditional probability
above 0.5. Compared with the cross-border case, the risk of EU-wide
concurrent renewable energy droughts for most countries is reduced
for wind, solar and the wind-solar mix. This demonstrates the bene-
fits of geographic diversification. However, even under the copperplate
assumption, the risk of concurrent renewable energy droughts remains
non-negligible (with a conditional probability between 0.20 and 0.56)
. In the case of wind-solar mix, Central Western European countries
and Poland are most likely to experience concurrent renewable energy
droughts given the occurrence of renewable energy droughts in the rest
of Europe. The adequacy of flexibility resources in relation to concur-
rent renewable energy droughts must be considered by system operators
when planning future weather-resilient energy systems for these coun-
tries.
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Appendix

Table Al provides a detailed review of state-of-the-art literature cov-
ering climate impacts on VRE supply. Most relevant information is sum-
marized for each study, including climate scenario, the usage of regional
climate model for downscaling and associated resolution, ensemble size
of climate scenario, long-term period studied, technology considered,
region, levels of detail of energy conversion model, statistical measures
used to characterise VRE supply and main conclusion.
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