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ABSTRACT: The stochastically perturbed parameterizations scheme (SPP) is here implemented and tested in
HarmonEPS}the convection-permitting limited area ensemble prediction system by the international research program
High Resolution Limited Area Model (HIRLAM) group. SPP introduces stochastic perturbations to values of chosen clo-
sure parameters representing efficiencies or rates of change in parameterized atmospheric (sub)processes. The impact of
SPP is compared to that of the stochastically perturbed parameterization tendencies scheme (SPPT). SPP in this first ver-
sion in HarmonEPS perturbs 11 parameters, active in different atmospheric processes and under various weather condi-
tions. The main motivation for this study is the lack of variability seen in cloud products in HarmonEPS, as reported by
duty forecasters. SPP in this first version is able to increase variability in a range of weather variables, including the cloud
products. However, for some weather variables the root-mean-squared error of the ensemble mean is increased and the
mean bias is impacted, especially in winter. This indicates that (some) parameter perturbation distributions are not optimal
in the current configuration, and a further sensitivity analysis is required. SPPT resulted in a smaller increase in variability
in the ensemble, but the impact was almost completely masked out when combined with perturbations of the initial state,
lateral boundaries, and surface properties. An in-depth investigation into this lack of impact from SPPT is here presented
through examining, among other things, accumulated tendencies from the model physics.

SIGNIFICANCE STATEMENT: Small inaccuracies, simplifications, or errors in any part of a complex and nonlinear
system like a weather model can amplify and in a short time become significant. We wanted to introduce a physically
consistent way of representing these uncertainties in a model that is used in several European countries. To do this we
introduce variations in a few parameters that are used in the model description, and that we know are uncertain. By
doing this we were able to increase the variability of the cloud products as desired. We see this as a promising approach
for capturing the possibilities of fog occurring or not in this model. Further refinements are needed before it can be
used in operational weather forecasts.
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1. Introduction

Ensemble prediction systems (EPSs) are the commonly
used framework in numerical weather prediction (NWP) to
provide information on the possible future states of the atmo-
sphere, taking into account uncertainties that exist in different
parts of the forecasting system. The main sources of uncer-
tainty in NWP models originate from (i) incomplete recon-
struction of the current atmospheric state (due to lack of
observations, limitations in data assimilation, etc.), and (ii)
errors in model construction (arising from the need to approx-
imate and discretize the atmospheric governing equations,
which then results in parameterization of unresolved pro-
cesses). These are referred to as initial state uncertainty and
model uncertainty, respectively. A third source of uncertainty

arises from how interactions are handled between the atmo-
sphere and other Earth system components (oceans, glaciers,
etc.). In limited area modeling (LAM) an additional uncertainty
source comes from how lateral boundary conditions from the
host model are handled (see e.g., Frogner et al. 2019).

HarmonEPS (Frogner et al. 2019) is a convection-permit-
ting LAM EPS developed by the international research pro-
gram High Resolution Limited Area Model (HIRLAM)
group. The EPS configuration used here includes initial state,
surface and lateral boundary uncertainty representations.
This study is motivated by feedback from duty forecasters
related to insufficient spread characteristics in HarmonEPS
cloud products. From a forecaster’s perspective, the uncer-
tainty regarding clouds, and especially low clouds, is of special
interest. One reason is that it also affects other prognostic
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parameters such as temperature near the ground. Currently,
the spread of the ensemble is considerably lower than the
forecast error [e.g., root-mean-square error (RMSE) of the
ensemble mean]. It is often seen that all members have
the same misplacement or have the same over or underpredic-
tion of the clouds. Thus, the issue of too confident ensembles
in difficult-to-predict weather situations (related especially to
cloud products) is often brought up by duty forecasters. On
top of this, forecasting clouds in the correct place is important
for generating products for atmospheric icing for wind energy,
power lines, and aviation (see e.g., Bernabò et al. 2015; Kraj
and Bibeau 2010; Nygaard et al. 2016).

Some operational HarmonEPS configurations have opted
to use multiphysics or multimodel approaches, but there is
currently no universal approach to handling model uncertain-
ties in HarmonEPS. Stochastically perturbed parameteriza-
tion tendencies (SPPT) (see e.g., Bouttier et al. 2012) is
available as an option, but is not used operationally in any
suites due to the small effect seen in previous studies (see
Frogner et al. 2019). Finding an efficient model uncertainty
representation is therefore the most obvious pathway that
could result in a more realistic variability in cloud products.

Representing model uncertainties in weather forecasts is
challenging, and it continues to be an active area of research
(see e.g., Leutbecher et al. 2017). Model errors are complex
and arise from a multitude of sources, therefore several differ-
ent approaches for representing them in EPS settings have
been developed over the years (see e.g., Ollinaho et al. 2017).
In this paper, the focus is on model uncertainty representa-
tions accounting for errors in (i) total tendency contributions
from physical parameterizations of the model, and in (ii) cho-
sen values of closure parameters controlling the efficiencies or
rates of change of parameterized (sub)processes. For item i,
SPPT is used. For item ii, the recently developed stochastically
perturbed parameterizations (SPP) methodology is applied fol-
lowing the implementation from the European Centre for
Medium-Range Weather Forecasts (ECMWF) (Ollinaho et al.
2017; Lang et al. 2021). SPP has been applied in several LAM
EPSs, e.g., (i) Wastl et al. (2019a) applied SPP in a hybrid setup
in Convection-Permitting Limited Area Ensemble Forecasting
(C-LAEF), (ii) Jankov et al. (2019) use SPP in High-Resolution
Rapid Refresh (HRRR) ensemble, and (iii) Thompson et al.
(2021) have implemented SPP in Weather Research and Fore-
casting (WRF) Model. The latter two implementations use a
slightly different SPP configuration to that used by ECMWF
and in this study (described in section 5). In this first implemen-
tation of SPP in HarmonEPS, 12 key parameters have been cho-
sen and tested with an emphasis on parameters related to clouds
and microphysics (7 of the 12) with the aim of trying to over-
come the lack of variability in clouds in particular. Based on ini-
tial testing, 11 of the 12 parameters were accepted for further
studying. Details about the excluded parameter are, however,
provided in section 5.

The ensemble system is described in section 2, the experi-
mental setup in section 3 and the verification methodology
used in section 4. Section 5 describes the SPPT and SPP
implementations and how the two model uncertainty schemes
perform in HarmonEPS. Section 6 is devoted to an in-depth

investigation on the different perturbations in HarmonEPS
and how they interact. Finally a general discussion and con-
clusions are presented in section 7.

2. HarmonEPS—The HARMONIE-AROME ensemble
prediction system

The convection-permitting HARMONIE-AROME model
(Bengtsson et al. 2017) is developed within the ALADIN-
HIRLAMNWP system (Termonia et al. 2018) and the system
serves as the operational forecasting tool in a number of coun-
tries in Europe. The forecast model is run with a 2.5-km hori-
zontal grid spacing with 65 levels in the vertical. The upper air
data assimilation system is based on three-dimensional varia-
tional data assimilation (3DVAR) (Brousseau et al. 2011)
with 3-hourly cycling. At the surface 2-m temperature (T2m)
and relative humidity (RH2m) as well as snow cover are assimi-
lated using optimal interpolation (Giard and Bazile 2000). The
ensemble prediction part of the system, HarmonEPS (Frogner
et al. 2019), is used in this study, and it supports a wide range of
perturbation methodologies dealing with initial, model and
boundary uncertainty.

The following perturbations described in Frogner et al.
(2019) are used in this study: (i) the initial condition (IC) per-
turbations created from applying the difference between the
ECMWF operational EPS (ECMWF ENS) member and con-
trol to the HarmonEPS control member analysis. (ii) The lat-
eral boundary perturbations (LBC). It must be noted that the
LBCs are not actual perturbations, but rather balanced states
from the corresponding ensemble member from the ECMWF
ENS (Sleigh et al. 2019). (iii) At the surface, perturbations
are applied to each members’ surface analysis following Bout-
tier et al. (2016) with perturbations added to model fields
kept constant during the forecasts (such as sea surface tem-
perature, vegetation and leaf area index) as well as to fields
evolving during the forecasts (temperature and moisture in
the soil). For more details on IC, LBC, and surface perturbations
in HarmonEPS the reader is referred to Frogner et al. (2019).

3. Experimental setup

HarmonEPS has been run in three different setups in this
study, all with the operational horizontal and vertical resolu-
tion of HARMONIE-AROME, and with 3-hourly cycling
with 3DVAR for the control: (i) each member is using the
control member’s upper air analysis with initial perturbations
(IC) added as described above. All members run their own
surface analysis using optimal interpolation, and surface per-
turbations are applied. The handling of the lateral boundaries
is as described above (LBC). Since we are initializing the
model surface fields from an ECMWF ENS model state, a
two-week spinup period is run prior to the start of the experi-
ment periods to allow the slow soil variables to adapt to the
HarmonEPS model climate. This is the reference setup in
HarmonEPS (experiments called REF). Experiments where
SPPT or SPP is added to REF also belong to this experiment
type. The forecasts are run for 148-h lead time. (ii) In section 6
how each of the perturbation types affect the ensemble in
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isolation is studied. Here, the same setup as in setup i is used,
except that each perturbation type is tested separately, includ-
ing SPPT and SPP, and that the ensemble members use the
surface analysis of the control in order to clearly distinguish
the effect of the different perturbations without the ensemble
members getting different surface histories. (iii) The third
setup is used for the sensitivity experiments with SPPT and
SPP. This setup is designed to only perturb the model physics,
keeping everything else equal for the ensemble members.
Here, the ensemble members start from the control member
initial conditions every cycle. No prior spinup period was
deemed necessary for these tests. The forecast lead time used
is 136 h. For all three experiment types we run the full fore-
cast length from 0000 UTC, while the intermediate times are
only short forecasts used for cycling. A summary of the exper-
iment details is presented in Table 1.

All the experiments are run with six ensemble members
plus a control member. Initial tests were conducted with more
ensemble members, but in order to make testing computa-
tionally affordable there was a need to reduce the ensemble
member count. Six members was found to be sufficient to
maintain the signal on how the ensemble skill was changing
between the different experiments. This is also in line with
the results of Clark et al. (2011) who showed that their rela-
tively small ensemble (3–9 members) had statistically indistin-
guishable average ROC areas relative to their full 17-member
ensemble, and Keil et al. (2019) who tested the effect of the
different ensemble sizes by applying a resampling method
with replacement and got qualitatively similar results.

4. Verification methodology

The verification of the different experiments is done against
point observations and against satellite-observed cloud masks.
For the point observations near surface parameters are veri-
fied against SYNOP stations, while upper air parameters are
verified against radiosondes. Bilinear interpolation is used to
interpolate the forecast values to the observation points. For

2-m temperature a correction is applied to account for the dif-
ferent elevation in model and observations, using the standard
adiabatic lapse rate of 6.5 K km21. A gross error check is per-
formed, where unrealistic values are removed. Then a further
check is performed, where observations that are more than six
standard deviations away from the forecast values are removed.

For the point verification the following validation metrics
are used to show the relative performance of the different
experiments. All ensemble members, including the control,
are used in the calculations:

• RMSE: The root-mean-square error of the ensemble mean
of the forecast compared with observations.

• The ensemble spread, or variability: the standard deviation
of the ensemble members around the ensemble mean:

spread 5

��������������������������
1

N 2 1

∑N
n51

xn 2 m( )2
√

,

where m is the ensemble mean. The ensemble spread should
be equal to the RMSE for a well calibrated ensemble.

• Mean bias: The ensemble mean 2 the observation, aver-
aged over all cases.

• fCRPS: The fair continuous ranked probability score (Leut-
becher 2019). CRPS is a negatively oriented score that
measures the distance of a continuous distribution function
to the observed value. CRPS reduces to the mean absolute
error of the forecast in the case of a one-member ensemble.
The fair version of CRPS corresponds to the expected
CRPS of an infinite sized ensemble. Leutbecher (2019) con-
clude that using the fair CRPS with an ensemble size of
four to eight ensemble members is sufficient for most
research experiments.

For the spatial verification the following validation metric is used:

• FSS: Fractions skill score (Roberts and Lean 2008; Roberts
2008). FSS is a measure of model forecast skill as a function
of spatial scale.

TABLE 1. Characteristics of the different experiment types used in this study.

Type i Type ii Type iii

Upper air assimilation Control only Control only Control only

Surface assimilation All members Control only Control only

Activated perturbations IC, LBC, and surface. Adding
either SPPT or SPP as
stated in the text.

IC, LBC, surface, SPPT, SPP.
One at a time.

SPPT or SPP with individual
parameters, members start
from control initial
conditions every cycle

Spinup Yes Yes No

Forecast length 148 h 148 h 136 h

Forecast period and number
of start dates

February 2019}28 start dates
(SPP and SPPT in full
setup). June 2019}30 start
dates (SPP in full setup).

1 Feb 2019–5 Feb 2019
(5 start dates)

30 May 2016–5 Jun 2016
(7 start dates) (SPP and SPPT
sensitivity). 20 Feb 2019–
26 Feb 2019 (7 start dates)
(SPP sensitivity).
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FSS is used here to evaluate the model forecast skill for
clouds, where the forecast total cloud cover Cf is assessed against
a satellite-observed cloud mask. Crocker and Mittermaier (2013)
employed a cloud mask to assess spatial model bias using contin-
gency table metrics and object-based methods. This work con-
cluded that using a cloud mask can give a quick assessment of
the forecast model tendency to contaminate clear sky with low
cloud fractions when low thresholds are used.

To undertake the model evaluation, a forecast cloud mask
Mf is extracted from the predicted total cloud cover by defin-
ing a threshold q in the following way:

Mx 5
1 if Cx # q

0 otherwise
,

{
(1)

whereMx is the masked field, Cx is the cloud fraction and sub-
script x is o for observations and f for forecast fields.

More than 50% of the model’s domain is covered by clouds in
all dates covered by the satellite data used in this study. Thus, the
model performance is assessed by forecasting clear areas instead
of clouds (Crocker and Mittermaier 2013). For this reason, Mx is
set to 1 where Cx is less than a given threshold. In this case an
event of being cloud free is defined at each model grid cell.

The satellite-observed cloud masks used in this study are a
product of the Polar Platform System (PPS) of EUMETSAT
Satellite Application Facilities for Nowcasting and very short
range forecasting (SAFNWC) (Thoss 2014a,b). Since the res-
olution of satellite-observed cloud masks [1 km for AVHRR
and 750 m for VIIRS, Thoss (2014b)] is higher than the model
resolution (2.5 km), the fraction of cloudy pixels is computed
for each model grid cell. This process results in observed cloud
fractions of values between 0 and 1. The resulting field is con-
verted to binary (Mo) by Eq. (1) after defining a threshold.

In this study, the threshold q is chosen to be 0.2. A low thresh-
old means more clouds and less cloud-free grid cells. Using a lower
threshold mimics the cloud mask generation algorithm which
describes a cell as being cloudy even when only thin cirrus clouds
are present. Only dates when the satellite data covers more than
80% of the model domain are considered. The maximum satellite
time deviation from forecast valid time is chosen to be 5 min.

To compute the FSS, first, the fraction of event occurrences in
the grid cell neighborhood is calculated. A grid cell neighbor-
hood of scale s is defined as the square centered on that grid cell
and covers (2s 1 1)2 grid cells where the scale s is 0, 1, 2, ... etc.
Since the model grid spacing is 2.5 km, the scale number s corre-
sponds to the spatial-scale length of 2.5(2s1 1) km.

As the experiments in this study have one control member
and six perturbed members, seven values are defined at each
grid cell for a given lead time when the control member is
included and six values when it is excluded.

FSS is defined by the formula below:

FSS 5 1 2

∑
PFij 2 OFij
( )2∑
PF2

ij 1 OF2
ij

( ) , (2)

where PFij and OFij are the forecast and observed event frac-
tions at grid cell ij, respectively, and following (Schwartz et al.
2010)

PFij 5
1
N

∑N
k51

PFijk, (3)

where PFijk is the forecast event fraction (here, being cloud
free) for grid cell ij and member k.

As this study was motivated by the insufficient spread char-
acteristics in HarmonEPS cloud products, there is naturally a
focus on the spread when evaluating the experiments. Also
included are the FSS for clouds, RMSE of the ensemble
mean, the mean bias and the fCRPS for a range of weather
variables to see how the perturbations introduced may or may
not alter the mean behavior of the ensemble. Other metrics
were also looked at, but were found not to add any extra
insight and are therefore not included.

The statistical significance of the differences between two
experiments are calculated using a bootstrap approach with
1000 replicates, computed independently at each lead time
from the observation/forecast data pooled for each forecast
start date. The test is insensitive to spatial autocorrelations
since all stations are represented in each pool. The sample
size varies between approximately 350 for the cloud variables,
to 850 for the near surface weather parameters. Statistical sig-
nificance is calculated for the levels 99.7%, 95%, and 68%,
meaning that the differences are considered to be significant
or not at these confidence levels. Examples of how this is used
and presented in scorecards are shown in Figs. 7 and 8. Obser-
vations uncertainty are not taken into account, this is moti-
vated by the findings of Frogner et al. (2019) who argue that it
is of less importance when comparing relative performance of
different model configurations. This is also in line with Jankov
et al. (2017) and Lang et al. (2021).

5. Model uncertainty schemes—SPPT and SPP

a. SPPT

The stochastically perturbed parameterization tendencies
scheme introduces stochastic perturbations to the tendencies
of horizontal wind components, specific humidity and temper-
ature produced by the physical parameterizations of the
model. The perturbations are applied at each model time step
and after the contribution of each physics parameterization
has been calculated. SPPT has been described in detail by
many other authors including Palmer et al. (2009), Bouttier
et al. (2012) and Frogner et al. (2019). The formulation used
here is based on the LAM implementation of SPPT described
in Bouttier et al. (2012). SPPT is tapered in the stratosphere
and below approximately 1200 m in the boundary layer to
avoid instabilities. Other systems such as the Austrian
C-LAEF use a partially perturbed parameterization tendency
technique or pSPPT, based on the work of Wastl et al.
(2019a). In this approach, the partial tendencies of the physics
parameterization schemes are perturbed separately, which is
in contrast to the traditional SPPT approach implemented in
HarmonEPS. This approach allows the boundary layer taper-
ing to be switched off and thus tendency style perturbations
can play an enhanced role (Wastl et al. 2019a).
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In the HarmonEPS implementation of SPPT the stochastic
pattern generator (SPG; Tsyrulnikov and Gayfulin 2017) is
employed for the generation of the random perturbation
fields. This pattern generator has the advantage of accounting
for “proportionality of scales,” meaning it takes into account
the fact that longer spatial scales live longer than shorter spa-
tial scales, which die out quicker, a widespread feature in
geophysics. In SPG, the perturbations vary spatially and tem-
porally, and are correlated through a third order in time sto-
chastic differential equation with a pseudodifferential spatial
operator defined on a limited area. The implementation in
HarmonEPS interfaces the code provided by Tsyrulnikov and
Gayfulin (2017) and is solely defined by the spatial (XLCOR)
and temporal (TAU) correlation length scales, and the stan-
dard deviation, SDEV. Furthermore, SPG provides an initiali-
zation to ensure stationary statistics from the start of the
integration.

1) SPPT SENSITIVITY TESTS

A number of sensitivity tests were carried out to investigate
the optimum settings for XLCOR and TAU for the SPPT
perturbations. Sensitivity tests were also designed to look into
the influence of the clipping ratio (XCLIP) and size of the
perturbations (controlled by the standard deviation of the
perturbations, SDEV). Various ranges were used to test each
one of these SPPT control parameters; for XLCOR, lengths
of 100–2000 km; for TAU, time scales of 6–24 h; for SDEV
and XCLIP values of 0.1–1.0 and 10.0–1.0 were used, respec-
tively. The ranges used for SDEV and the clipping ratio
XCLIP ensured the perturbation coefficients were clipped at
21 and 1. All sensitivity tests were carried out over the
domain shown in Fig. 1, over the 7 days from 30 May 2016 to

5 June 2016, and with 6 perturbed members plus one unper-
turbed member (type iii experiments as defined in section 3).

Sensitivity tests with varying TAU were first compared in
order to find a suitable setting for the time correlation length
scale. Settings for XLCOR and SDEV were compared using a
similar methodology.

Sensitivity tests for SPPT control parameters XLCOR and
TAU did not demonstrate statistically significant results.
Despite the range of values used to test both parameters, the
difference in spread/skill scores, and indeed all verification
scores, was negligible (not shown). Figure 2 displays the
impact of SPPT for a sample of tests from the sensitivity
experiments undertaken for the SDEV and XCLIP control
parameters. The three tests shown represent the low, middle,
and high end of the tuning ranges. These sensitivity experi-
ments give a much larger response than those for XLCOR
and TAU. Increased standard deviation sizes and reduced
clipping ratios lead to statistically significant improvements in

FIG. 1. The integration area.

FIG. 2. Spread and skill scores from sensitivity tests for SPPT for
(top) total cloud cover (CCtot) and (bottom) cloud base (Cbase)
for experiments with varying SDEV (standard deviation of pertur-
bation sizes) and XCLIP (perturbation clipping ratios); SDEV 5

0.1, XCLIP 5 10.0 (gray), SDEV 5 0.5, XCLIP 5 2.0 (orange),
SDEV 5 1.0, and XCLIP 5 1.0 (blue). The score differences are
calculated with respect to the experiment with SDEV 5 1.0. For
CCtot the score differences for both the spread and the RMSE are
statistically significant at the 99.7% level. For Cbase the score dif-
ferences for the spread are also at the 99.7% level, while for RMSE
the results are mixed.
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the spread skill relationships for almost all variables at all
lead times (not shown). However, it was discovered that val-
ues of SDEV above 0.3 result in the undesirable effect of
having a non-Gaussian distribution of perturbation values.
This non-Gaussian characteristic arises when clipping is per-
formed, as all values outside the clipping range are added to
the tails of the interval. In all further experiments presented
here TAU is set to 8 h, XLCOR is set to 200 km, and SDEV
and XCLIP are set to 0.3 and 3.33, respectively.

2) SPPT IN FULL EPS SETUP

Although SPPT demonstrated a clear impact when tested
separately (see Fig. 2), experiments where SPPT was com-
bined with initial, surface, and lateral boundary perturbations
(type i experiments as defined in section 3) only resulted in a
small amount of additional variability in the ensemble. This
result was seen for the same dates used in the sensitivity
experiments (not shown) as well as in a month long experi-
ment covering February 2019 (also seen in Fig. 15 which is dis-
cussed later, compare dark blue and gray lines). This
conclusion holds for all investigated parameters, also upper
air parameters where SPPT is not tapered. This minor impact
of SPPT on ensemble spread and skill in HarmonEPS is in
contrast to what has been reported at other centers using
SPPT (Bouttier et al. 2012; Palmer et al. 2009), and despite
the effort to optimize it in HarmonEPS and the promising
results when it was tested separately. These results are dis-
sected and discussed further in section 6.

It is clear, however, that the SPPT results motivate the
implementation of another method to account for model
error in HarmonEPS. In the next section, the implementation
and first results of the stochastically perturbed parameteriza-
tions (SPP; Ollinaho et al. 2017; Lang et al. 2021) scheme in
HarmonEPS are described.

b. SPP

The SPP scheme introduces stochastic perturbations to
selected closure parameters in physical parameterizations of a
model. The control variables in SPP influencing the magnitude

of the perturbations are (i) the spatial and (ii) temporal correla-
tion lengths of the perturbation patterns, and (iii) the shape
of the distribution from which the perturbations are drawn. In
HarmonEPS, variables i and ii are controlled using SPG, as for
SPPT. The ECMWF implementation of SPP is followed here
where the parameter perturbations sample a lognormal distribu-
tion (Ollinaho et al. 2017; Lang et al. 2021). The other practical
choice would be to sample a normal distribution (Jankov et al.
2017, 2019; Thompson et al. 2021). Following the ECMWF
implementation, variable iii is regulated through choosing the
width of the distribution (standard deviation) accompanied by
a shape choice determining whether the mean or the median
of the distribution is equal to the unperturbed closure parameter
value.

The current implementation of SPP in HarmonEPS per-
turbs 12 different parameters, 11 of them are activated and
listed in Table 2. The selected parameters are included after
advice from physics experts and are not only uncertain in their
nature but also active in different processes and under various
atmospheric conditions. Parameter 1 works on convection,

TABLE 2. Summary of SPP parameters (PAR.). Det. is the deterministic value of the parameter, STD#1 is the original standard
deviation the sensitivity process was started with, STD#2 is the standard deviation after the sensitivity analysis, and 5 perc. and 95
perc. are the 5th and 95th percentiles, respectively, of the resulting pdf for STD#2, scaled by the deterministic value. Type stands for
liquid microphysics (LM), ice microphysics (IM), radiation (RAD), convection (CONV), and turbulence (TURB).

No. Description PAR. Det. STD#1 STD#2 5 perc. 95 perc. Type

1 Threshold for cloud thickness used in
shallow/deep convection decision

CLDDPTHDP 4000 0.1 0.4 0.07 3.50 CONV

2 Cloud ice content impact on cloud thickness ICE_CLD_WGT 1 0.1 0.4 0.07 3.50 IM
3 Ice nuclei concentration ICENU 1 0.35 0.7 0.03 31.6 IM
4 Saturation limit sensitivity for condensation VSIGQSAT 0.03 0.1 0.4 0.07 3.50 LM
5 Kogan autoconversion speed KGN_ACON 10 0.25 0.5 0.03 3.81 LM
6 Kogan subgrid-scale (cloud fraction) sensitivity KGN_SBGR 0.5 0.1 0.2 0.31 2.24 LM
7 Graupel impact on radiation RADGR 0.5 0.15 0.3 0.15 2.93 RAD
8 Snow impact on radiation RADSN 0.5 0.15 0.3 0.15 2.93 RAD
9 Top entrainment efficiency RFAC_TWO_COEF 2 0.1 0.4 0.07 3.50 TURB

10 Stable conditions length scale RZC_H 0.15 0.1 0.4 0.07 3.50 TURB
11 Asymptotic free atmospheric length scale RZL_INF 100 0.15 0.6 0.01 3.84 TURB

FIG. 3. Spread and skill scores for total cloud cover (CCtot) for
one week in spring 2016 showing the sensitivity of changing the
spatial scale for the SPP perturbations, in gray for 1000 km and in
orange for 200 km. The score differences are statistically significant
at the 99.7% level.
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2–6 on condensation, 7 and 8 on cloud affected radiation and
the last three on turbulence. SPP perturbations were also
introduced for a parameter controlling the threshold for cloud
thickness for stratocumulus/cumulus transition (not included
in the table). This parameter is involved in choosing the stra-
tocumulus regime in the convection scheme (only moist
updrafts and no dry updraft calculations); however, the
chance of it becoming active is very small as it depends on a
very strong inversion strength threshold in the atmosphere.
Since the parameter is only seldom active, it was decided to
switch off perturbations to it.

1) SPATIAL AND TEMPORAL SCALES

All parameters are perturbed using the same spatial and
temporal scales, but using a unique random seed for each
parameter. The spatial and temporal length scales were tested
in an early implementation of SPP which included 9 out of the
11 parameters listed in Table 2. Two different spatial length
scales were tested, 200 and 1000 km. An example of the effect
of changing the spatial scale is shown in Fig. 3. In another test
(not shown) a spatial scale of 100 km was tested. This did not
give any significant differences from using 200 km. In the fol-
lowing, 200 km is used for all SPP results shown. A range of
temporal scales were tested, from 1 h to infinity, with very lit-
tle sensitivity seen (not shown). In the following a temporal
length scale of 12 h is used.

2) PARAMETER DISTRIBUTIONS

Experts were consulted on the different parameterizations
and in particular about the range of values the (originally
deterministic) parameters could take. The STD#1 value in
Table 2 results in approximately this range. All parameters
implemented so far follow a lognormal distribution with the
mean of the distribution equal to the unperturbed parameter
value, as in the latest ECMWF setup (Lang et al. 2021),
except for ice nuclei concentration (ICENU) where the
median is used. The number concentration of the cloud ice
crystals may vary with several orders of magnitude depending
on the occurrence of splintering processes. Those are active
only under special conditions, e.g., temperatures near 258C
together with high concentrations of cloud liquid and of

graupel. Therefore, a very long tail for ICENU has a physical
relevance, and the median was chosen as it resulted in a lon-
ger tail than using the mean.

The sensitivity to the width of the distribution (the standard
deviation) was examined for each parameter separately.
These tests included a summer and a winter period (30 May
2016–5 June 2016 and 20 February 2019–26 February 2019),
the summer period being the same as the one used for the
SPPT tests. The experiments were run with the same number
of ensemble members and the same cycling as for the SPPT
experiments, i.e., experiment type iii as defined in section 3.
The final parameter distributions were decided based on
how the perturbations affected the ensemble spread and
also minimized any degradations to the ensemble mean
RMSE. For parameters KGN_SBGR, RADGR, and RADSN
(see Table 2 for a description of the different parameters),
a clipping function was introduced to ensure the parameters
were kept within physical bounds. The resulting parameter

FIG. 4. The pdfs for the parameters perturbed in SPP. Parameters are described in Table 2.

FIG. 5. Spread and skill scores for fraction of low cloud cover
(CClow) for one week in February 2019 showing the sensitivity of
increasing the standard deviation of the pdf for the SPP parameter
saturation limit sensitivity (VSIGQSAT); in gray at 2 times the
SDEV and in orange at 4 times the SDEV. The score differences
for the spread are statistically significant at the 99.7% level. For the
RMSE there is no significant difference for115 and133 h, it is sig-
nificantly worse to increase the SDEV at the 68% level or higher
for the first lead times up to 19 h and significantly better to
increase the SDEV at the 68% level or higher from112 h.

F ROGNER E T A L . 781APRIL 2022

Brought to you by Swedish Meteorological & Hydrological Institute | Unauthenticated | Downloaded 06/07/22 10:20 AM UTC



densities are shown in Fig. 4. As mentioned above, ICENU
is the only parameter that uses the median. Its density
distribution is quite different from the other parameters,
hence it is also plotted separately in the right panel of
Fig. 4. The resulting 5th and 95th percentiles of the distribu-
tions are shown in Table 2 together with the deterministic
values (Det.).

In Fig. 5 spread and skill for low clouds are shown as
an example of the sensitivity to the width of the distribution
for the saturation limit sensitivity (VSIGQSAT). As seen in
Fig. 5 there was a clear positive impact of increasing the width
of the probability density function (pdf) for this parameter.
For other parameters, only a limited effect was seen. A rather
conservative approach of only increasing the standard

FIG. 6. Spread (solid line) and RMSE of the ensemble mean (dashed line), for summer (red) and winter (blue). The
parameters on the x axis correspond to those in Table 2. (top) 2-m temperature (T2m), (middle) fraction of low cloud
cover (CClow), and (bottom) 12-h accumulated precipitation (PcP12h). Forecast length is 115 and 127 h for T2m
and CClow, and118 and130 h for PcP12h.
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deviation when it had a clear positive impact on the system
was chosen.

3) IMPACT OF INDIVIDUALLY PERTURBED PARAMETERS

As expected, perturbing some parameters has a bigger
impact than perturbing others. Due to the nature of the per-
turbed parameters, there is a clear difference in impact for
the summer and winter testing periods for some parameters.
In Fig. 6 the spread and RMSE from individually perturbing
the parameters in Table 2 for two forecast lead times is shown
for summer and winter testing periods. The 115- and 127-h
forecast lead times represent the maximum and minimum
responses seen in the verification for some of the parameters
and are connected to the diurnal cycle (all forecasts start at
0000 UTC). These two forecast lead times are shown for T2m
and fraction of low cloud cover (CClow) in Fig. 6. For 12-h
accumulated precipitation, 118- and 130-h forecast lead
times are used, as the 12-h accumulation is not available at
115 and 127 h. The spread and RMSE shown here is with
the final parameter distributions (STD#2). The stable con-
dition length scale (RZC_H), the saturation limit sensitivity
for condensation (VSIGQSAT, especially in summer), the
threshold cloud thickness used in shallow/deep convection

decision (CLDDPTHDP) and the asymptotic free atmo-
spheric length scale (RZL_INF) are clearly the most effective
parameters for increasing the spread. It is also quite evident
that in winter KGN_ACON, KGN_SBGR, RADGR and
RADSN do so to a lesser extent. We can also observe that the
spread depends much more on the parameter perturbed than
the ensemble mean RMSE does.

4) SPP IN FULL EPS SETUP

After the individual adjustment of the parameter pdf’s, SPP
was added to the reference setup of HarmonEPS (Frogner
et al. 2019) and compared to the reference experiment (REF)
(type i experiments as defined in section 3). Two months were
tested, one in winter (February 2019) and one in early sum-
mer (June 2019). In Figs. 7 and 8 scorecards show the effect of
adding SPP in HarmonEPS for a selection of weather parame-
ters in February and June, respectively. There is a clear over-
all increase in spread when SPP is included, for all parameters
and most lead times, for both the summer and winter periods.
For RMSE the results are more mixed. There is a significant
increase in RMSE for near surface weather parameters like
T2m and RH2m from applying SPP. The increased RMSE is
more evident in winter than in summer. However, RMSE for

FIG. 7. Scorecards for February 2019, including the statistical significance for the score differences between an experiment with SPP and
a reference experiment without SPP (REF). (left) RMSE of the ensemble mean, (center) ensemble spread, and (right) fCRPS. Tempera-
ture (T), dewpoint temperature (Td), wind speed (S), relative humidity (RH), and geopotential (Z). The prevailing numbers indicate the
pressure level (850, 700, and 500 hPa) or the height above surface (2 and 10 m). Also shown are, maximum wind gust (Gmax), mean sea
level pressure (Pmsl), fraction of total cloud cover (CCtot), cloud base height (Cbase), fraction of low clouds (CClow), and 3- and 6-hourly
accumulated precipitation (AccPcp3h and AccPcp6h).
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the cloud variables (fraction of total cloud cover (CCtot),
cloud base height (Cbase) and fraction of low clouds (CClow)
are mainly improved by adding SPP in summer. For winter
the impact is more mixed. fCRPS also shows a mixed effect
from including SPP, but there is a significant improvement
from SPP for CCtot and Cbase for the summer period.

Recalling what was seen in Fig. 6, parameter RZC_H was
the most influential among this set of parameters, and as
expected reducing the width of the pdf for RZC_H has a large
impact on the ensemble skill (not shown). The parameter has
also a clear impact on the mean bias as seen in Fig. 9. It is nat-
urally undesirable that the perturbations change the mean
bias of the system (here making the ensemble colder). Reduc-
ing the STD#2 value of RZC_H helps, to a large extent, to
alleviate this effect. Interestingly, it is also seen that for CCtot
the behavior is exactly opposite to that of T2m, with the mean
bias becoming closer to the reference with increasing STD#2.
Note that other parameter perturbations are active in this
test, so this bias change for CCtot might be due to the interac-
tion with other perturbations. Another possible explanation is
compensating errors in the forecast model. This will be
looked into in a future study in connection with revised pdfs
for the parameters.

A case with poorly predicted fog has been selected to illus-
trate the low cloud/fog-related forecast response of the SPP
perturbations. Figure 10 shows a satellite image from 16 Feb-
ruary 2019 where widespread areas of fog cover e.g., southern
Sweden and Denmark, and some areas of southwestern

Norway and northeastern Finland are covered with scattered
fog. In the reference setup (REF), all the perturbed members
(Fig. 11) represent the scattered fog quite well, but the larger
fog covered areas in Sweden and Denmark are not present in
the forecasts at all. In the SPP experiment (Fig. 12), a larger
variability between the ensemble members and a tendency for
more fog can be seen. The fog predicted in REF is still pre-
sent, but in addition larger areas of fog in better agreement
with the satellite imagery can be found. The larger variability
seen in this case is in line with what is seen in the average
scores for the cloud parameters in Fig. 7. SPP also increases
the average cloud cover for the period (not shown).

For the convective summer cases investigated (not shown),
the ensemble sensitivity to the SPP perturbations is less pro-
nounced. In these cases, precipitation areas are redistributed,
but without any significant changes in ensemble skill.

A pairwise FSS comparison of total clouds between REF
and SPP experiments for February and June 2019 is presented
in Fig. 13. SPP performs better than REF in June (right panel)
with a relatively larger statistical confidence (FSS is a posi-
tively oriented skill score). For February (left panel) there is
no statistically significant difference between the two experi-
ments. The differences between the first and third quartiles
are larger in February compared to June, meaning the differ-
ences between the two ensembles are greater in February. By
looking at the median and the first and third quartiles, it can
be seen that the distributions of the differences for all scales
are left skewed in February (and oriented toward negative

FIG. 8. As in Fig. 7, but for June 2019.
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values), indicating that the differences are larger to the left of
the median. However, it is difficult to determine which ensem-
ble performs better in February. It can also be observed in
Fig. 13 that the difference between SPP and REF does not
change significantly across the spatial scales used in this
verification.

According to Roberts and Lean (2008) the forecast is con-
sidered skillful for scales at which FSS exceeds FSSuniform 5

0.5 1 f0, where f0 is the fraction of cloud-free grid cells. Figure 14
illustrates the difference between FSS and FSSuniform, where
f0 values are calculated from satellite observations for each
observation time. A forecast is considered skillful for scales
with the difference diffuniform 5 FSS 2 FSSuniform larger than
0. Moreover, larger values of the difference correspond to a
higher skill. Finding the minimum scale, scalemin, at which
FSS exceeds FSSuniform is useful in estimating the forecast
skill. The median of diffuniform crosses the zero line at spatial
scale 32.5 km for both SPP and REF in February (with rela-
tively lower statistical confidence), at spatial scale 12.5 km for
SPP and spatial scale 17.5 km for REF in June (with relatively
higher statistical confidence). Here, the values are rounded to
the nearest scale. Thus, both models achieve FSSuniform at
smaller scales in June than in February. By considering
the median and the first quartile, SPP achieves FSSuniform at

smaller scales more frequently than REF. In February, the
two models could be considered the same given the lower sta-
tistical confidence.

The FSS skill is also affected by the chosen masking thresh-
old. For example, a threshold of 0.7 slightly reduces the model
forecast skill (not shown). This is expected because a higher
threshold corresponds to more cloud-free grid cells, while the
satellite products used in this study tend to underestimate the
number of cloud-free grid cells, as mentioned in section 4.
Thus, by increasing the threshold, the forecast cloud mask is
expected to be less similar to the satellite-observed cloud
mask and therefore FSS is expected to be smaller. In this
case, FSS medians for SPP become slightly lower than REF
and lower in February than in June. This means that in gen-
eral SPP produces more cloudy areas, especially in winter.
Changing the threshold to 0.7 does not change the statistical
confidence of the results considerably when compared to the
threshold of 0.2. These changes are also reflected in the diffuni-
form values; however, the changes are small and do not change
the overall assessment of the forecast skill.

6. Interactions between perturbation types

As discussed in section 5, SPPT did not produce any signifi-
cant impact on the ensemble when it was combined with the
other perturbation types in HarmonEPS, whereas SPP had a
clear positive impact on the ensemble spread (Fig. 15, top
panel). A series of experiments was conducted to understand
the cause of this lack of impact from SPPT, using experiment
setup ii as described in section 3. Due to computational
affordability, a subset of the full one-month-long testing
period was used. This allowed eight additional experiments to
be run in order to get qualitative answers for the lack of

FIG. 9. Mean bias for (top) 2-m temperature (T2m) and (bottom)
total cloud cover (CCtot) for a reference HarmonEPS run without
SPP (gray), with SPP using STD#1 for RZC_H (green), with SPP
and 2 3 STD#1 for RZC_H (blue), and with SPP and 3 3 STD#1
for RZC_H (orange).

FIG. 10. Satellite picture from NOAA-18 at 1728 UTC 16 Feb 2019.
Areas in dark orange can be characterized as fog.
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impact from SPPT. A one week period in February 2019 was
chosen for this purpose. Obviously, the perturbations in a
nonlinear system like an NWP model are not additive, but
with the distinct nature of the perturbations that act and focus
on different aspects and time ranges of the forecast, it is rea-
sonable to assume they will all contribute to some extent to
the variability of the ensemble. Although, the geographical
location of the effect will likely be closely linked to the places
in the modeled atmosphere where there is sensitivity/instabil-
ity present. Looking at the effect of all the perturbations indi-
vidually (Fig. 15, bottom panel) we can see they are all able to
create spread. At 118 h the initial and lateral boundary per-
turbations result in the same amount of spread, while SPPT
and surface perturbations result in less and SPP more spread.
The experiment with SPP has comparable or higher spread
than the other experiments until about 133 h, when the
experiment with lateral boundary perturbations begins to
dominate. There is a steady increase in the spread emanating
from the lateral boundary perturbations, and after about 33 h
they are creating the largest spread among the individually
active perturbations. This is reasonable, as the perturbations
can only be within the large-scale solution inherited from the
global model. As noted before, the lateral boundary condi-
tions are not perturbations per se, but rather balanced states

from ECMWF ENS (members from ECMWF ENS). The
combination of initial, lateral boundary and surface pertur-
bations (REF, note that this is mainly hidden under the
REF 1 SPPT curve) clearly has higher spread than the three
perturbations have individually, as one would expect. Adding
SPPT on top has very little effect (curve is almost on top of the
experiment REF), while adding SPP has a clearly noticeable
effect on the spread. The ensemble mean RMSE (skill) differs
less than the spread for the different experiments, which indicates
that the different perturbations increase the spread and have less
of an effect on the mean. However, it is worth noting that the
experiment where SPP is added to REF has the lowest RMSE.

In contrast to the initial and surface perturbations that are
applied at only the analysis time over the grid and the lateral
boundary perturbations that are applied in a narrow lateral
boundary zone, the model uncertainty representations add
perturbations at every time step over the grid, and act on the
physics parameterizations through perturbing the total physi-
cal tendencies (SPPT) or through stochastic perturbations to
selected closure parameters in physical parameterizations
(SPP). SPPT and SPP are therefore quite different in nature
compared to the other perturbations. It is natural to expect
that both would thus add variability on top of the other per-
turbations. This is, however, not the case for SPPT. In section 5

FIG. 11. Fog in reference forecast, members 1–6.
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a clear impact on the spread was seen from SPPT when it was
the only perturbation method applied, and the ensemble was
sensitive to an increase in the standard deviation of the SPPT
perturbations (see Fig. 2). This is confirmed in Fig. 16, where
the spread and skill is shown for SPPT experiments with two
different values for the standard deviation. While a clear
impact on the spread can be seen from increasing the standard
deviation when only SPPT is used (top panel), the effect from
the same increase is minor when SPPT is combined with ini-
tial, lateral boundary and surface perturbations (bottom
panel). A standard deviation of 0.3 for SPPT is about the
highest one can have in order to maintain the correct histo-
gram shape, as explained in section 5. A standard deviation of
0.9 for SPPT is therefore not recommended, but it is used
here to maximize the effect seen on the spread.

The following endeavors to understand why the SPPT per-
turbations have so little effect in experiments where it is com-
bined with the other perturbations. The 3-h accumulated
humidity tendencies from the model physics are investigated
for a range of experiments with different combinations of per-
turbations for several dates and forecast lengths, looking at
several model levels and cross sections. Only a single forecast
is presented in detail here (0000 UTC 1 February 2019 1 24 h),
but the conclusions holds for all cases investigated. In Fig. 17 the

weather situation on 0000 UTC 2 February 2019 is shown
together with a cross section used later in the analysis.

In Fig. 18 the difference in ensemble standard deviation of
the 3-h accumulated humidity tendencies for the experiments
where different standard deviations of 0.9 and 0.3 are used
for SPPT is shown. The left panel shows the effect of the
increased SPPT standard deviation when only SPPT is active.
We again clearly see the effect of the increased SPPT stan-
dard deviation, with higher spread especially over the middle
part of Norway. The ensemble mean is mainly unchanged by
increasing the SPPT perturbations (not shown). The change
in ensemble standard deviation over the ocean to the left in
the figure has both positive and negative values, hence, the
change in SPPT standard deviation is only making a small
shift in the ensemble standard deviation in that area. The
right panel in Fig. 18 is the same as the left panel, except here
SPPT perturbations are introduced on top of the initial, lat-
eral boundary and surface perturbations. In contrast to what
was seen for the SPPT only experiments (left panel), the
effect seen from increasing the size of the SPPT perturbations
is much smaller over the main active area in the middle part
of Norway. Again, this is in line with the results in Fig. 16.

The cause for this behavior seems to be that the spread
added by SPPT is located in areas where the other

FIG. 12. Fog in SPP forecast, members 1–6.
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perturbations have already accounted for the variability. It is
therefore interesting to see which of the other perturbations
masks the effect of SPPT. In the following, the effect that
SPPT has on top of the initial, lateral boundary and surface
perturbations is looked at separately. Figure 19 shows the
spread and skill for these perturbation type combinations.
The curves with/without SPPT for the different perturbations
are almost on top of each other, except for the surface pertur-
bations, i.e., both the initial and lateral boundary perturba-
tions mask the effect of SPPT. To study this in more depth we
again look at the standard deviation of 3-h accumulated
humidity tendencies, Fig. 20, now for the experiment with
only SPPT (left), only initial perturbations (center) and for
the experiment where SPPT is included in addition to the ini-
tial perturbations (right). The areas where SPPT creates vari-
ability coincides with the areas where the initial conditions
create variability, and in the case where both initial and SPPT
perturbations are active, hardly any difference is seen from
the case with only initial perturbations. The geographical
areas where SPPT tries to add variability are thus in the same
locations as the variability generated by the initial condition
perturbations, and very little extra is introduced by SPPT.

Similarly, the effect of SPPT on top of the lateral boundary
perturbations was investigated. A cross section along the line in
Fig. 17 is shown in Fig. 21. As for the initial perturbations,
SPPT perturbations are also clearly masked by the lateral
boundary perturbations throughout the atmospheric column.
The geographical areas where SPPT tries to add variability are
the same areas as the variability generated by the lateral bound-
ary perturbations, explaining why SPPT adds very little to the
spread of the ensemble as seen in Fig. 15, bottom panel.

There is some effect of SPPT on top of the surface perturba-
tions, as it adds variability in the middle part of Norway

where surface perturbations contribute very little (not shown).
However, the increased variability from SPPT on top of the
surface perturbations is in the places where initial perturba-
tions are already active (not shown).

In contrast to SPPT, SPP adds variability in the ensemble
when acting alone, but also when added to the other perturba-
tions in the ensemble (see Fig. 15). It is interesting to see if
this is due to perturbations being introduced in other geo-
graphical areas (or in other weather situations), if it is an
amplification of the spread already created by the other per-
turbations, or a combination. In Fig. 22 the standard devia-
tions of the 3-h accumulated humidity tendencies are shown
applying a mask that identifies in what geographical areas the
perturbations are active. The mask is set individually for each
perturbation type (each panel) by dividing the maximum
value in the plot by 20, hence the size of the perturbations are
irrelevant in this figure, favoring the perturbations which are
small (SPPT mainly). While mostly the same areas show up for
all the perturbation types, SPP does show active areas where
the others do not, e.g., along the southwest coast of Norway,
along the southwestern part of Finland, and in areas of southern
Sweden. SPP therefore seems to be capable of adding variabil-
ity that is not captured by the other perturbations.

7. Discussion and conclusions

SPP in this first HarmonEPS configuration is a promising
scheme for including a model uncertainty representation in
HarmonEPS. The main motivation for finding an effective
model uncertainty representation for HarmonEPS was the
current lack of variability in cloud products. It has been dem-
onstrated in this study, through the impact on general skill
scores and a case study, that SPP is able to accomplish this.

FIG. 13. FSS difference of total clouds between REF and SPP experiments as a function of spatial scale for (left)
February and (right) June 2019. Median, first, and third quartiles and the confidence interval of the median (CI) are
shown. Ensemble members 1–6, threshold 0.2 and lead times 0–36 h are considered. Count is the number of pairs
(forecast valid date, satellite observation date) that match provided that the model domain is covered with more than
80% satellite valid data.
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Interestingly, it has been demonstrated that SPP is able to
add variability in geographical areas where the other pertur-
bations are not active. The case study also illustrated SPP’s
ability to capture a fog event that was missed by a forecast
without SPP. McCabe et al. (2016) also demonstrated that
perturbing parameters with the random parameter (RP)
scheme in the Met Office’s convection-permitting EPS for the
United Kingdom (MOGREPS-U.K.) enabled the EPS to cap-
ture observed fog events that were otherwise missed. More-
over, SPP is able to add to HarmonEPS’ variability much
more than SPPT. SPP is also in line with the objective of phys-
ically consistent perturbations as it does not violate local con-
servation properties of energy and moisture. Although SPP was
able to improve the variability of the ensemble, in some cases a
degradation of the ensemble mean RMSE was observed. More-
over, perturbations of some parameters affected the mean bias

of the model, especially during the cold season. In particular,
three parameters were found to be more active in winter
(VSIGQSAT, RZC_H, and RZL_INF). While these parame-
ters are also active in summer, the relative impact of all parame-
ters is more even in summer (see Fig. 6). Reducing the standard
deviation for RZC_H perturbations was seen to help in reduc-
ing the bias change with respect to T2m, but had the opposite
effect on the cloud variables. Some of the perturbed parameters
are involved in the same processes and are thus likely influ-
enced by each other. So far this has not been taken into
account, as each perturbed parameter has its own realization of
the random perturbation pattern. In theory, this could possibly
result in perturbations of one parameter working against pertur-
bations of another parameter. This in turn could lead to too
large perturbations of the individual parameters to get the
desired effect on the variability, as well as perturbations simply

FIG. 14. Difference between FSS and FSSuniform for (top) REF and (bottom) SPP as a function of spatial scale for
(left) February and (right) June 2019. All other figure information is as in Fig. 13.
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cancelling each other out. The impact of the correlation of the
perturbation patterns is currently being studied, starting with
RZC_H and RZL_INF. If this proves successful, this could fur-
ther improve the SPP scheme and might also help in reducing
the above mentioned ensemble mean RMSE/bias change.
Although taking possible parameter correlations into account
further adds to the maintenance of the scheme, it might be pos-
sible to utilize some algorithmic parameter estimation methods
(see e.g., Ollinaho et al. 2013, 2014) to inform about these
correlations.

SPPT in HarmonEPS is not performing as well as reported
in other EPSs, including other convection-permitting EPSs
(e.g., Bouttier et al. 2012). Increasing the size of the SPPT
perturbations only resulted in a minor change in ensemble

variability when SPPT was combined with the other perturba-
tions used in this study. Similar negligible effects on the
ensemble variability have been seen when SPPT was tested
on a domain over Ireland (not shown). One possible explana-
tion for this reduced impact from SPPT compared to other
studies could be the relative magnitude of SPPT perturbations
compared to the initial and lateral boundary perturbations
(e.g., see Fig. 15, bottom panel). HarmonEPS is known to
have a larger initial spread compared to e.g., ECMWF ENS,
as reported in Frogner et al. (2019). Looking at the tenden-
cies, it was seen that SPPT was only able to create variability
in the same geographical areas as the other perturbations, at
least for the cases which have been investigated in this study.
Disentangling the different perturbations in HarmonEPS
showed that all of the other perturbations are taking part in

FIG. 15. Spread and skill scores for (top) total cloud cover
(CCtot) for February 2019 and (bottom) the one week testing
period in February 2019. SPP perturbations (pink), SPPT perturba-
tions (yellow), lateral boundary influence (brown), initial perturba-
tions (orange), surface perturbations (green), boundary, surface
and initial perturbations combined (called REF, gray), REF1 SPP
(light blue), and REF1 SPPT (dark blue). Note that REF is partly
hidden under REF 1 SPPT. Statistical significance is calculated for
each experiment with respect to REF. The score differences for the
spread are all statistically significant at the 99.7% level, except for
experiment REF 1 SPPT, which is statistically significant at the
68% level or higher for the top figure, and statistically significant at
the 95% level up to 19 h and from 133 to 148 h, and not statisti-
cally significant from 112 to 130 h. For the RMSE the results of
the significance tests are mixed.

FIG. 16. Spread and skill scores for total cloud cover (CCtot) for
the one week testing period in February 2019. SPPT with standard
deviation for the perturbation of 0.3 (orange) and with standard
deviation for the perturbation of 0.9 (green). (top) Only SPPT per-
turbations, and (bottom) all other perturbations in addition to
SPPT. For the top panel the score differences are statistically signif-
icant at the 99.7% level both for the ensemble spread and for
RMSE, except for RMSE for 13 h where it is significant at the
68% level. For the bottom panel the score differences are statisti-
cally significant at the 68% level or higher for the ensemble spread.
For RMSE there is no significant difference from increasing the
standard deviation for 127, 130 and 148 h, it is statistically worse
at the 68% level or higher for 115, 136, 139, and 142 h and bet-
ter at the 68% level or higher for the remaining forecast lead times.
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masking the effect of SPPT; although, the surface perturba-
tions do so to a lesser extent than the initial and boundary
perturbations.

The time periods used in this investigation may also have
an impact on the response from SPPT. Previous studies have
reported that the impact of physics perturbations is quite case
dependent with a particular dependence on synoptic forcing
[greater response to physics perturbations in weakly forced
cases e.g., Hally et al. (2014), Keil et al. (2014)]. More
recently, Keil et al. (2019) demonstrated that hourly

precipitation rates illustrate a clear weather regime depen-
dence, with spatial variability increased during weak forcing.
While such investigations are beyond the scope of the current
study, the minimal effect of SPPT illustrated in this study
could be related to strong synoptic forcing over the Scandina-
vian region during February 2019 (images not shown illustrate
some features consistent with strong upper-level forcing).
Despite the potential imbalances in strength between the ini-
tial, lateral boundary and SPPT perturbations, SPP is able to
create variability in areas where the other perturbations do
not, and also produce more useful forecasts seen from e.g.,
the resolution component of the Brier score and the area
under the relative operating characteristic (ROC) curve (not
shown). Unlike SPPT, where the perturbations are zero in
cases where the total tendency is zero, SPP acts on individual
processes through perturbing the closure parameters in the
physical parameterizations and can trigger new states even in
such situations.

One option for trying to improve SPPT in HarmonEPS is
pSPPT (Wastl et al. 2019b), where the partial tendencies of
the physics parameterization schemes are sequentially per-
turbed. This was also shown to improve the numerical stabil-
ity of SPPT, making it possible to switch off the tapering in
the boundary layer for SPPT for all parameterizations, except
for the turbulence scheme. Applying pSPPT has the potential
to create more variability near the surface than seen in the
standard SPPT. pSPPT also results in a more physically con-
sistent scheme, as the interaction between the uncertainties of
the different physics parameterization schemes is sustained.

Model error is complex and originates from many sources,
e.g., unresolved processes at subgrid scale, simplified process
description, incomplete knowledge of processes and uncertain
closure parameters in the parameterizations. Debate exists

FIG. 17. Weather situation at 0000 UTC 2 Feb 2019. Satellite
picture from NOAA. In orange is the MSLP analysis from opera-
tional model. The green line shows the position of the cross section
used (678N, 48E), (588N, 188E).

FIG. 18. Difference in ensemble standard deviation for two experiments where the SPPT standard deviation is 0.9
and 0.3. For 3-h accumulated specific humidity tendencies for 24-h forecast from 0000 UTC 1 Feb 2019 for level 28
(600 hPa). (left) For the experiments with only SPPT and (right) for the experiments with all other perturbations on in
addition to SPPT. The values are scaled by 1.003 105.
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over whether or not a single model uncertainty scheme is suf-
ficient and that perhaps a combination of schemes is needed
to account for the full model uncertainty present. For exam-
ple, Jankov et al. (2019) argue that SPP on its own in their 3-
km ensemble is not sufficient, and that combining it with
SPPT is necessary. This is in contrast to the results presented
in this paper where SPP is seen to contribute considerably to
the variability of the ensemble, while activating SPPT adds
very little. Jankov et al. (2019) applies SPP only to the plane-
tary boundary layer (PBL) scheme and Thompson et al.
(2021) only for a few microphysics parameters, and this could

be part of the explanation why a reduced effect from SPP is
seen. Interestingly, Lang et al. (2021) show a revised version
of SPP in ECMWF ENS that is as skillful as SPPT, while the
first version was not (Ollinaho et al. 2017). Clearly, the addi-
tional probabilistic skill provided by SPP is, among other
things, tied to the quantity and quality of the parameters
perturbed.

The impact of SPP reported in this study, in Jankov et al.
(2019), and in the two versions of ECMWF SPP (Ollinaho
et al. 2017; Lang et al. 2021), highlights that the actual setup
of the SPP scheme is important. This includes targeting influ-
ential parameters important in different weather situations, the
shape of the parameter pdfs, the influence of the spatial and
temporal scales used, and possible correlations between the
parameters. An obvious improvement to the current SPP imple-
mentation in HarmonEPS is to increase the number of per-
turbed parameters, and also to extend perturbations to better
cover the different parts of the model physics. Perturbations to
the semi-Lagrangian horizontal diffusion will be added and
investigated in a future study. Also the choice of spatial and
temporal length scales will be revisited in a future study, possi-
bly with different scales for different parameters. SPG, as used
here, has the possibility to be extended to three dimensions,
which might be important for some processes. For this to be
computationally affordable in an operational setting, further
work is needed to decrease the cost of the generation of the
random fields and in optimizing how often they are applied.
Currently, perturbing all 11 parameters used in this study at the
same time gives rise to a 5% increase in computer resources
compared to a run without SPP when the pattern is updated
every time step (in 2D), and 0.1% when updated every hour.
Carefully choosing parameters that are proven to be influential
will also be important for the affordability of SPP. As seen in
Fig. 6 some of the parameters have little impact in both seasons,
and further studies will illustrate if these parameters can be
excluded or if they prove to be important in certain situations.

One drawback of SPP compared to SPPT is the issue of
maintenance. While SPPT requires very little maintenance,

FIG. 19. Spread and skill scores for total cloud cover (CCtot) for
the one week testing period in February 2019. Experiment with
only initial perturbations (light blue), experiment with initial per-
turbations and SPPT (dark blue), experiment with only lateral
boundary perturbations (orange), experiment with lateral bound-
ary perturbations and SPPT (green), experiment with only surface
perturbations (gray), and experiment with surface perturbations
and SPPT (yellow). Even though the experiments without SPPT
are almost invisible under the SPPT ones, the spread is significantly
increased by applying SPPT at the 68% level or higher for all
experiments, except for a few forecast lengths where no significant
difference is found. For the RMSE the results of the significance
tests are mixed.

FIG. 20. Standard deviation for 3-h accumulated specific humidity tendencies for 24-h forecast from 0000 UTC 1 Feb 2019 for level 28
(600 hPa) for the experiments with (left) only SPPT, (center) only initial perturbation, and (right) initial and SPPT perturbations. The val-
ues are scaled by 1.003 104.

MONTHLY WEATHER REV I EW VOLUME 150792

Brought to you by Swedish Meteorological & Hydrological Institute | Unauthenticated | Downloaded 06/07/22 10:20 AM UTC



SPP needs reassessment and adjustments when new physics
are developed. However, Lang et al. (2021) argue that the
conservation properties of SPP make it nonetheless an attrac-
tive option over SPPT. Currently physics developments are
based mainly on deterministic experimentation. It will be
important for optimal use of resources, as well as optimal

uncertainty representation, that in the future stochasticity is
taken into account at an early stage of physics development.

SPP works well for the convection-permitting ensemble
tested here, even when perturbing so few parameters involved
in a rather limited set of physical parameterizations and pro-
cesses within them. An ensemble size of 6 1 1 members as

FIG. 21. Standard deviation for 3-h accumulated specific humidity tendencies for 24-h forecast from 0000 UTC 1 Feb 2019 for the cross
section seen in Fig. 17 for the experiments with (left) only SPPT perturbations, (center) only lateral boundary perturbations, and (right) lat-
eral boundary and SPPT perturbations. The values are scaled by 1.003 104.

FIG. 22. Standard deviation for 3-h accumulated specific humidity tendencies for 24-h forecast from 0000 UTC 1 Feb 2019 for model
level 61. The scaling in the plots is constructed to highlight the areas where the different perturbations add variability, with the transition
from white to green equaling the maximum value in each plot divided by 20. (top left) Only SPP perturbations, (top center) only SPPT per-
turbations, (top right) only initial perturbations, (bottom left) only lateral boundary perturbations, and (bottom center) only surface pertur-
bations. The values are scaled by 1.003 104.
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used here, and experiment periods of two weeks for the sensi-
tivity of SPP parameters and two months for testing SPP with
respect to REF, are obviously not enough to adequately sam-
ple the full probability distribution of atmospheric states.
Longer experiment periods that include a wider variety of dif-
ferently forced atmospheric situations and large ensemble
sizes would be desirable to confirm the results presented in
this paper. However, we are confident, based on tests compar-
ing our 6 1 1 member ensemble with a 20 1 1 member
ensemble and the use of fair CRPS, that our results are a
good foundation for further development of SPP in Harmo-
nEPS. Further work will first focus on getting SPP ready for
operational implementation in HarmonEPS suites (Frogner
et al. 2019) by adjusting the pdfs for the already implemented
parameters, while also taking into account the correlations of
some of the parameters, and paying special attention to possi-
ble undesirable bias changes.
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Bouttier, F., B. Vié, O. Nuissier, and L. Raynaud, 2012: Impact
of stochastic physics in a convection-permitting ensemble.
Mon. Wea. Rev., 140, 3706–3721, https://doi.org/10.1175/MWR-
D-12-00031.1.

}}, L. Raynaud, O. Nuissier, and B. Ménétrier, 2016: Sensitivity
of the AROME ensemble to initial and surface perturbations
during HyMeX. Quart. J. Roy. Meteor. Soc., 142, 390–403,
https://doi.org/10.1002/qj.2622.

Brousseau, P., L. Berre, F. Bouttier, and G. Desroziers, 2011:
Background-error covariances for a convective-scale data-
assimilation system: AROME–France 3D-Var. Quart. J. Roy.
Meteor. Soc., 137, 409–422, https://doi.org/10.1002/qj.750.

Clark, A. J., and Coauthors, 2011: Probabilistic precipitation forecast
skill as a function of ensemble size and spatial scale in a
convection-allowing ensemble. Mon. Wea. Rev., 139, 1410–
1418, https://doi.org/10.1175/2010MWR3624.1.

Crocker, R., and M. Mittermaier, 2013: Exploratory use of a satel-
lite cloud mask to verify NWP models. Meteor. Appl., 20,
197–205, https://doi.org/10.1002/met.1384.

Frogner, I.-L., and Coauthors, 2019: HarmonEPS}The
HARMONIE ensemble prediction system. Wea. Forecasting,
34, 1909–1937, https://doi.org/10.1175/WAF-D-19-0030.1.

Giard, D., and E. Bazile, 2000: Implementation of a new assimila-
tion scheme for soil and surface variables in a global NWP
model. Mon. Wea. Rev., 128, 997–1015, https://doi.org/10.
1175/1520-0493(2000)128,0997:IOANAS.2.0.CO;2.

Hally, A., E. Richard, and V. Ducrocq, 2014: An ensemble study
of HyMeX IOP6 and IOP7a: Sensitivity to physical and
initial and boundary condition uncertainties. Nat. Hazards
Earth Syst. Sci., 14, 1071–1084, https://doi.org/10.5194/nhess-
14-1071-2014.

Jankov, I., and Coauthors, 2017: A performance comparison
between multiphysics and stochastic approaches within a
North American RAP ensemble. Mon. Wea. Rev., 145, 1161–
1179, https://doi.org/10.1175/MWR-D-16-0160.1.

}}, J. Beck, J. Wolff, M. Harrold, J. B. Olson, T. Smirnova,
C. Alexander, and J. Berner, 2019: Stochastically perturbed
parameterizations in an HRRR-based ensemble. Mon. Wea.
Rev., 147, 153–173, https://doi.org/10.1175/MWR-D-18-0092.1.

Keil, C., F. Heinlein, and G. C. Craig, 2014: The convective
adjustment time-scale as indicator of predictability of convec-
tive precipitation. Quart. J. Roy. Meteor. Soc., 140, 480–490,
https://doi.org/10.1002/qj.2143.

}}, F. Baur, K. Bachmann, S. Rasp, L. Schneider, and C. Barthlott,
2019: Relative contribution of soil moisture, boundary-layer
and microphysical perturbations on convective predictability
in different weather regimes. Quart. J. Roy. Meteor. Soc., 145,
3102–3115, https://doi.org/10.1002/qj.3607.

Kraj, A. G., and E. L. Bibeau, 2010: Phases of icing on wind turbine
blades characterized by ice accumulation. Renewable Energy,
35, 966–972, https://doi.org/10.1016/j.renene.2009.09.013.

Lang, S. T. K., S.-J. Lock, M. Leutbecher, P. Bechtold, and
R. M. Forbes, 2021: Revision of the stochastically perturbed
parametrisations model uncertainty scheme in the integrated
forecasting system. Quart. J. Roy. Meteor. Soc., 147, 1364–1381,
https://doi.org/10.1002/qj.3978.

Leutbecher, M., 2019: Ensemble size: How suboptimal is less than
infinity? Quart. J. Roy. Meteor. Soc., 145, 107–128, https://doi.
org/10.1002/qj.3387.

}}, and Coauthors, 2017: Stochastic representations of model
uncertainties at ECMWF: State of the art and future vision.
Quart. J. Roy. Meteor. Soc., 143, 2315–2339, https://doi.org/10.
1002/qj.3094.

McCabe, A., R. Swinbank, W. Tennant, and A. Lock, 2016: Rep-
resenting model uncertainty in the Met Office convection-
permitting ensemble prediction system and its impact on
fog forecasting. Quart. J. Roy. Meteor. Soc., 142, 2897–2910,
https://doi.org/10.1002/qj.2876.

Nygaard, B., L. Moen, Ø. Welgaard, F. Nyhammer, R. Bredesen,
and O. Byrkjedal, 2016: Monitoring and forecasting ice loads
on a 420 kV transmission line in extreme climatic conditions.
Proc. 16th Int. Workshop on Atmospheric Icing of Structures,
Uppsala, Sweden, Swedish Energy Agency, Abstract 39,
https://windren.se/IWAIS_p/IWAIS2015/00_00_00_Proceedings_
IWAIS2015_32MB.pdf.

Ollinaho, P., P. Bechtold, M. Leutbecher, M. Laine, A. Solonen,
H. Haario, and H. Järvinen, 2013: Parameter variations in
prediction skill optimization at ECMWF. Nonlinear Processes

MONTHLY WEATHER REV I EW VOLUME 150794

Brought to you by Swedish Meteorological & Hydrological Institute | Unauthenticated | Downloaded 06/07/22 10:20 AM UTC



Geophys., 20, 1001–1010, https://doi.org/10.5194/npg-20-1001-
2013.

}}, H. Järvinen, P. Bauer, M. Laine, P. Bechtold, J. Susiluoto,
and H. Haario, 2014: Optimization of NWP model closure
parameters using total energy norm of forecast error as a tar-
get. Geosci. Model Dev., 7, 1889–1900, https://doi.org/10.5194/
gmd-7-1889-2014.

}}, and Coauthors, 2017: Towards process-level representation
of model uncertainties: Stochastically perturbed parametriza-
tions in the ECMWF ensemble. Quart. J. Roy. Meteor. Soc.,
143, 408–422, https://doi.org/10.1002/qj.2931.

Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher,
G. Shutts, M. Steinheimer, and A. Weisheimer, 2009:
Stochastic parametrization and model uncertainty. ECMWF
Tech. Memo. 598, 44 pp., http://www.ecmwf.int/sites/default/
files/elibrary/2009/11577-stochastic-parametrization-and-model-
uncertainty.pdf.

Roberts, N. M., 2008: Assessing the spatial and temporal variation
in the skill of precipitation forecasts from an NWP model.
Meteor. Appl., 15, 163–169, https://doi.org/10.1002/met.57.

}}, and H. W. Lean, 2008: Scale-selective verification of rainfall
accumulations from high-resolution forecasts of convective
events. Mon. Wea. Rev., 136, 78–97, https://doi.org/10.1175/
2007MWR2123.1.

Schwartz, C. S., and Coauthors, 2010: Toward improved convec-
tion-allowing ensembles: Model physics sensitivities and opti-
mizing probabilistic guidance with small ensemble member-
ship. Wea. Forecasting, 25, 263–280, https://doi.org/10.1175/
2009WAF2222267.1.

Sleigh, M., P. Browne, M. Diamantakis, T. Haiden, and
D. Richardson, 2019: IFS upgrade greatly improves forecasts.

ECMWF Newsletter, No. 160, ECMWF, Reading, United
Kingdom, 18–22, https://www.ecmwf.int/node/19164.

Termonia, P., and Coauthors, 2018: The ALADIN system and
its canonical model configurations AROME cy41t1 and
ALARO cy40t1. Geosci. Model Dev., 11, 257–281, https://doi.
org/10.5194/gmd-11-257-2018.

Thompson, G., J. Berner, M. Frediani, J. A. Otkin, and S. M. Grif-
fin, 2021: A stochastic parameter perturbation method to rep-
resent uncertainty in a microphysics scheme. Mon. Wea. Rev.,
149, 1481–1497, https://doi.org/10.1175/MWR-D-20-0077.1.

Thoss, A., 2014a: Algorithm theoretical basis document for the
cloud mask of the NWC/PPS. Tech. Rep., NWC SAF, 64 pp.,
https://www.nwcsaf.org/AemetWebContents/Scientific
Documentation/Documentation/PPS/v2014/NWC-CDOP2-
PPS-SMHI-SCI-ATBD-1_v1_0.pdf.

}}, 2014b: User manual for the NWC/PPS application: Sci-
ence part. Tech. Rep., NWC SAF, 53 pp., https://www.
nwcsaf.org/AemetWebContents/ScientificDocumentation/
Documentation/PPS/v2014/NWC-CDOP2-PPS-SMHI-SCI-
UM-1_v1_0.pdf.

Tsyrulnikov, M., and D. Gayfulin, 2017: A limited-area spatio-
temporal stochastic pattern generator for simulation of uncer-
tainties in ensemble applications. Meteor. Z., 26, 549–566,
https://doi.org/10.1127/metz/2017/0815.

Wastl, C., Y. Wang, A. Atencia, and C. Wittmann, 2019a: A hybrid
stochastically perturbed parametrization scheme in a convec-
tion-permitting ensemble. Mon. Wea. Rev., 147, 2217–2230,
https://doi.org/10.1175/MWR-D-18-0415.1.

}}, }}, }}, and }}, 2019b: Independent perturbations for
physics parametrization tendencies in a convection-permitting
ensemble (pSPPT). Geosci. Model Dev., 12, 261–273, https://
doi.org/10.5194/gmd-12-261-2019.

F ROGNER E T A L . 795APRIL 2022

Brought to you by Swedish Meteorological & Hydrological Institute | Unauthenticated | Downloaded 06/07/22 10:20 AM UTC


