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Abstract: Holistic water quality models to support decision-making in lowland catchments with
competing stakeholder perspectives are still limited. To address this gap, an integrated system
dynamics model for water quantity and quality (including stream temperature, dissolved oxygen,
and macronutrients) was developed. Adaptable plug-n-play modules handle the complexity (sources,
pathways) related to both urban and agricultural/natural land-use features. The model was applied
in a data-rich catchment to uncover key insights into the dynamics governing water quality in a
peri-urban stream. Performance indicators demonstrate the model successfully captured key wa-
ter quantity/quality variations and interactions (with, e.g., Nash-Sutcliff Efficiency ranging from
very good to satisfactory). Model simulation and sensitivity results could then highlight the influ-
ence of stream temperature variations and enhanced heterotrophic respiration in summer, causing
low dissolved oxygen levels and potentially affecting ecological quality. Probabilistic uncertainty
results combined with a rich dataset show high potential for ammonium uptake in the macrophyte-
dominated reach. The results further suggest phosphorus remobilization from streambed sediment
could become an important diffuse nutrient source should other sources (e.g., urban effluents) be
mitigated. These findings are especially important for the design of green transition solutions, where
single-objective management strategies may negatively impact aquatic ecosystems.

Keywords: system dynamics; peri-urban areas; lowland catchments; water quality model; modeling;
uncertainty; green transition

1. Introduction

Surface water ecosystems worldwide are deteriorating at an alarming rate under
ever-increasing human pressures and climate change [1–3], threatening biodiversity and
ecosystem services that link to human water security and public health [4–7]. Notably,
increases in agricultural productivity, urbanization, and their associated impacts have
multiplied the number and severity of stressors to surface waters since the middle of the
20th century. Anthropogenic changes to the soil surface and sub-surface (e.g., drainage
network) have resulted in important flow alterations that can have direct ecological conse-
quences or indirect consequences via water quality impairment stemming from enhanced
loads of nutrients or pollutants [8–10]. Bioeconomy-related pressures resulting from the
drive towards green transition solutions in response to climate change threats may pose
additional threats to stream water quality [11].

Streams draining peri-urban landscapes (as defined in [12]) are a prime example of
such systems, with great potential to be impacted by the heterogeneous sprawl of urban,
industrial, and agricultural activities coexisting with natural areas that may be found
sporadically throughout a given catchment. The combination of various hydrological
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pathways and related response times, with faster drainage from impervious urban areas
compared to more natural ones, results in high spatial and temporal variability at different
scales, as reported in [13–15]. Moreover, measurements taken in these types of catchments
are still generally insufficient to capture—spatially or temporally—the driving processes
leading to these variations, which are needed to ensure effective mitigation strategies
and sustainable decision-making [16]. Management decisions regarding stream flow and
quality within the peri-urban landscape are thus extremely challenging. Integrated water
quality models, i.e., considering the mutual interaction of flow and quality with potential
for integration with the broader socio-economical-ecological system, are therefore essential
tools to support water resources management and facilitate decision-making, as advocated
in a recent review of water quality models ([17]).

Many hydrological and water quality models have been developed over the years.
These models can be classified by increasing degree of complexity from statistical (e.g.,
regression-based) to more mechanistic models (physical description of processes), and
spatially from lumped to physically distributed, chosen depending on the application
purpose. Widely applied water quality models (based on a number of published studies
over the last 20 years [18]) include the Soil and Water Assessment Tool (SWAT) [19],
WASP [20], QUAL2E/K [21], AQUATOX [22], and the MIKE series [23]. However, their
use to simultaneously address the hydrology and water quality of streams within peri-
urban contexts is challenging. Reasons for this may lie in the reliance on a hydrodynamic
model not yet fully adapted to the peri-urban context [24], the large data requirement,
and the parametrization level necessary when using spatially distributed models. This
can also cause long simulation times [25] and/or difficulty in accounting for the inherent
uncertainty and high variability of input data [26].

Consequently, specific research-based models have been developed for investigating
peri-urban streams. However, these models tend to be fragmented in sub-disciplines,
e.g., focusing on the hydrology [27] or targeting a specific water quality aspect, e.g.,
identifying source contribution and pathways for pesticide pollution [28]. While they
certainly have the capability to perform integrated simulations or to be further developed
by being coupled together, their interfacing (data format, calculation time step) may not
be straightforward. Machine learning techniques have become extremely popular for
water quality (for instance, for the prediction of pH, suspended solids, and ammonium
concentration using different algorithms in [29]), possibly coupled to other models (e.g.,
application of artificial neural networks coupled with SWAT in [30]) and could therefore
be applied in peri-urban settings. Nevertheless, these models also rely heavily on data
and may be limited in terms of direct (cause-effect) links to process understanding and
thus decision-support capabilities, as experienced by [31]. Finally, and to this day, very
few models offer the possibility and flexibility for stakeholder engagement, the inclusion
of local knowledge, and integration capabilities at a higher level for socio-economical-
ecological consideration, which is deemed necessary for better and more acceptable stream
water management [26].

A promising solution that can fill the gap in terms of watershed modeling approaches,
capable of offering users a holistic and reliable understanding of the systems involved,
including uncertainties related to both linear and nonlinear dependencies within and across
sub-systems, is system dynamics (SD) simulation. The approach is based on the implemen-
tation of an interconnected system of flows and stocks, whose structure gives rise to the
dynamic behavior [32]. SD introduces flexibility lacking in many other methods, including
faster model development and shorter simulation time, ability to simulate interactions
and thus interdependencies between model sub-systems, and improved transparency for
conceptual understanding of the system and thus communication of model results [33].
Moreover, the benefits of SD for water resources modeling are numerous, e.g., multidisci-
plinary aspects, causality analysis, stakeholder participation, as documented in [34,35], and
it has been broadly applied to numerous environmental (e.g., climate change [36], waste
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management issues [37]) and water resource management issues at different spatial scales
(see Section 2.1 below).

Although SD simulation continues to gain traction as a useful tool, there is still a gap
with respect to studies utilizing this approach to provide holistic, integrated model insights
within the field of water resources modeling and planning [34], and more specifically,
within water quality modeling (see also Section 2.1). This study aims to fill this gap,
presenting an integrated SD model for (1) water quantity and (2) water quality (i.e., physico-
chemical conditions), which is used to (3) enhance our understanding of the highly dynamic
processes governing water quality in a peri-urban catchment context.

Other SD models exploring water quality and quantity exist (e.g., [38]); however, these
are limited in their exploration of the aforementioned dynamic processes. Modules have
been developed, which can be implemented in a plug-and-play fashion, to handle the
complexity related to both urban and agricultural/natural land-use features that may be
present within a given stream’s reach, in terms of sources and pathways which may impact
water quality. The model has been applied in a data-rich catchment to demonstrate its
applicability. In this catchment, degraded water and ecological quality have been routinely
observed. More specifically, important temporal variations, in terms of dissolved oxygen,
temperature, flow, and nutrient discharge from both urban and agricultural areas are
possible drivers of ecological degradation, although other stressors (e.g., habitat degra-
dation) co-exist [39]. Comparison of simulation results with both available sensor and
grab sampled data provide valuable insights into the processes affecting peri-urban stream
quality and the importance of integrating water quantity and quality modeling to improve
system understanding.

2. Methodology
2.1. System Dynamics Approach

The SD model has been developed using the visual object-oriented software Stella
Architect [40]. SD models have been developed to address both water quantity and quality
challenges, though typically separately. This includes models that simulate local hydro-
logical processes [41] or capture the general water balance at catchment or regional scales
(see, for instance, [42–44]). Specific applications for water quality include nutrient release
from agriculture and urban areas with stakeholder participation [43,45,46], pollutant point
discharge from raw sewage or bypass effluents [47], pathogens [48], salinity issues [49],
contaminant spills [50], and contaminated groundwater transport including with discharge
to a receiving stream [51]. To the authors’ knowledge, the model presented here is the first
SD model to integrate stream water quantity and quality with the objective of simulating
the major features present within a mixed land-use catchment context.

2.2. Model Description

The SD model is comprised of a scalable, combined hydrologic and in-stream water
quality model. Overall, the model aims to simulate the water flow and associated stream
depth, incorporating key natural and urban-related hydrological processes as described
further below. Fundamentally, it is based on a representation of fully mixed connected
reaches, through which different estimated hydrological flow components (groundwater,
urban-related flows, tributaries) are aggregated and routed along (Figure 1). The geometry
of the stream reach is simplified to an ideal rectangular cross-section, which is deemed
sufficient considering the bathymetric data available. The natural and anthropogenic
features of the hydrological cycle will combine to influence the various in-stream physico-
chemical parameters. Currently, dissolved oxygen (DO), stream temperature (temp),
nitrate (NO3), ammonium/ammonia (NH4), soluble reactive phosphorus (PO4), as well
as chlorophyll-a (chl-a)—used as a proxy for suspended algae and benthic plant biomass
(macrophytes and benthic algae), are simulated in terms of water quality parameters.
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Figure 1. Conceptual model structure for a single reach encompassing the key hydrological (upper) and in-stream water
quality (lower) processes. Key interconnecting processes for water quality given as numbers include: (1) carbonaceous
biochemical oxygen demand, (2) reaeration, (3) nitrification, (4) sediment oxygen demand, (5) photosynthesis/autotrophic
respiration, (6) nutrient assimilation, (7) denitrification, (8) settling, (9) ammonium/ammonia partitioning (pH-dependent),
and (10) water-atmosphere heat exchange. All processes are temperature-dependent. Abbreviations are defined in the
related Sections 2.2.1 and 2.2.2.

All processes and associated sub-processes were developed as separate modules
within the provided software interface, enabling the plug-n-play environment. A catchment
model can thus be quickly assembled by first creating the required number of reaches and
connecting all relevant input and output variables between modules of interest within
a reach, and then between the reaches, providing a flexible environment for fast and
transparent model development (Supplementary Information, Figure S1). A condensed
description of the model and simulated processes is provided in more detail below and in
Appendix A.
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2.2.1. Hydrological Model

The hydrological cycle found in peri-urban streams is comprised of both a natu-
ral component, as well as regulated (e.g., wastewater effluent outlets) and unregulated
(e.g., separate system outlets) components representing the anthropogenic modification
of the water cycle. The hydrological model is driven by precipitation, air temperature
and extraterrestrial radiation, equivalent to a lumped rainfall-runoff (RR) formulation.
When applied as several modules in series as presented here, however, it can be seen
as a semi-distributed model (or series of lumped models), capable of representing key
features specific to smaller sub-catchments that may have different governing parame-
ters. To account for the urban component, precipitation can then be partitioned between
the natural/agricultural (or pervious) and urban (or impervious) components estimated
within the catchment, which is allocated using an aggregated coefficient of imperviousness
(fimp) (Equations (A2) and (A17)) varying between 0 (natural sub-catchment) and 1 (fully
impervious/urban catchment). The general water balance for a given reach is:

Qout = Qin,routed + RRStreamflow − ∑
j

outflows (1)

where Qout is the flow at the outlet of a reach; Qin,routed is the routed outflow from the
previous reach and routed flow components (tributaries discharging within the reach, urban
water flows); RRstreamflow represents the flow component generated by the precipitation
falling over pervious areas and handled by the RR model; and finally, outflows, j, represents
the sum of any water withdrawals (e.g., direct water abstraction, losing reach section).

More specifically, the RR model is inspired by existing lump formulations [52], ac-
counting for soil moisture, groundwater storage, and an extra runoff stock (Figure 1;
Equations (A1), (A4) and (A13)). The contribution resulting from the impervious surfaces,
corresponding to the urban-related outflows (i.e., separate systems and combined sewer
overflows) are estimated using an equivalent drainage area estimated from spatially ag-
gregated data of imperviousness, network extent in the sub-catchment, and dedicated
reservoirs (Equations (A17)–(A19)). Combined sewer overflows are specifically modeled
as a simple reservoir but with a nonlinear outflow that becomes active above a certain
volume threshold; this is incorporated in the reach as a point inflow (other, Figure 1; Equa-
tion (A23)). Wastewater treatment plants (WWTP) effluents, constituting point discharges
to the stream, are currently introduced as a time series. All the urban inflows are aggre-
gated at the inlet of the reach and routed using a 3rd-order delay function (equivalent to
a 3rd-order Nash-cascade model) before being merged with the RR model output. This
enables hydrograph shape prediction when the inflows and channel characteristics are
known. Finally, a leaking term is introduced for each reach to account for a possible losing
stream section (outflow from the stream to the groundwater, Equation (A24)).

Water depth is inferred from the calculated water flow using Manning’s equation with
a shallow depth approximation and a variable Manning’s coefficient, n, estimate (Equa-
tion (A25)). The latter is dynamically updated on a daily basis in the model using a power
regression law, with the estimated streamflow as the independent variable (Equation (A27))
based on the findings from [53]. This approach is deemed reasonable in small streams
for which Manning’s coefficient (and consequently depth) are strongly affected by the
influential seasonal macrophyte coverage occurring at low flow in the summer but less at
high discharge (Figure S5).

2.2.2. Physico-Chemical Conditions and Water Quality

All dissolved substance concentrations, C, in the stream model are simulated using
fully-mixed mass balance equations with relevant source and sink terms, S, that are often
temperature-dependent (all terms expressed in [mass/time]):

d(V·C)

dt
= QinCin − QoutC + S(C, p) (2)
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where V represents the volume of water in a given reach, QinCin are the substance loading
terms, C is the fully-mixed concentration of the substance in the reach, and Qin and Qout
represent, respectively, the inflow and outflow in the reach. The substance loadings are
calculated from estimated/input flow components combined with measured or represen-
tative concentration levels at the stream interface, i.e., the source-pathway and possible
attenuation is not explicitly modeled.

The stream water temperature model is based on an instantaneous mixing model
using temperature loading in the investigated reach, the temperature loading estimated
from the previous reach, and the equilibrium temperature concept for the heat exchange at
the stream/air interface [54,55]:

ρCp
∂(V·Tw)

∂t
= AH + ρCp

(
∑ TiQi − TwQout

)
(3)

where ρ is the water density, Cp is the water-specific heat capacity [MJ·kg−1·◦C−1], A is
the area of river/atmosphere interface [m2], H is the net atmospheric flux [MJ·m2·day−1],
Ti, Qi are the water temperature and inflows to the reach respectively, and Qout is the
outflow of the reach. Temperature loadings, TiQi, are assessed from the different calculated
or input flow components combined to temperature estimate provided as time series or
assessed using a regression model based on air temperature (Figure S6).

DO in the stream is depleted by carbonaceous biological oxygen demand (cBOD,
Equation (A37)), nitrification (NBOD, Equation (A43)), a constant “background” sediment
oxygen demand (SOD, Equation (A54)), and an additional dynamic heterotrophic respi-
ration term (Equation (A72)). This term accounts for enhanced heterotrophic activities,
stemming from enhanced settling of fine organic matter or plant exudation in streams with
a high density of water plants, as highlighted in [56]. DO is also affected by photosynthe-
sis/autotrophic plant respiration (Equations (A68)–(A72)) and balanced by a reaeration
process. To prevent negative DO concentrations from occurring, we implemented a simple
feedback control mechanism by linking the DO to the oxidation rate for organic matter
(modeled as cBOD) following [57] (Equation (A40)). The potential DO diurnal variation
stemming from plant biomass photosynthesis, and autotropic respiration is simulated on
an hourly basis and determined by the photoperiod, estimated max. photosynthesis rate
on a daily basis and idealized diurnal cycles [58] (Equation (A70)). Finally, DO saturation
is computed from temperature, salinity, and altitude [59] (Equations (A36)–(A38)), and
reaeration is driven by the Owens-Gibbs formulation (Equation (A35)).

The model simulates dissolved orthophosphate and inorganic nitrogen (in nitrate
and ammonium forms) as nutrients received in the stream water. The nitrification process
is simplified to a one-step process in which the first oxidation to nitrite is omitted due
to its fast reaction rate (Equation (A46)), while on the other hand, nitrate is potentially
removed by denitrification [60] (Equation (A51)). Ammonium/ammonia partitioning is
evaluated using an equilibrium reaction based on pH data [61] (Equation (A48)). pH
is currently incorporated directly as input data to the model and is not calculated. The
nutrient N, P pool is potentially depleted via assimilation by the plant biomass based on
mass stoichiometric ratios or simply transported further downstream. Nutrient fluxes from
the sediment are currently not accounted for in this model version.

The plant biomass in the stream water contributing to photosynthesis and respira-
tion is split into two different stocks, corresponding to two separate autotroph groups
according to their mobility: phytoplankton, which is transported in the water column, and
fixed aquatic plant communities (e.g., macrophytes, benthic algae), which are pooled to-
gether. For both stocks, the plant biomass is reduced by a combined respiration/excretion
and non-predatory mortality term (Equations (A55)–(A56)). Phytoplankton, addition-
ally, can settle (Equation (A57)). The respiration/excretion and mortality terms are only
temperature-dependent [62] (Equation (A58)), whereas gross growth is controlled and
limited by environmental conditions including temperature (Equation (A59)), nutrient
availability (minimum of N, P pool following a Michaelis–Menten formulation, Equa-
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tion (A61)), and light (Beer–Lambert light attenuation integrated over time and depth
(Equation (A62)). The light attenuation coefficient is dynamically estimated and linearly
dependent on both suspended particles (non-algal suspended solids as background attenu-
ation) and the phytoplankton concentration, but also non-linearly related to macrophyte
biomass, following the regression model built by [63] on various plant communities (Equa-
tion (A65)).

The daily photosynthetic rate is a linear function of the gross growth rate for the
different aquatic plant stocks, identical for all stocks (Equation (A68)), and the correspond-
ing autotrophic respiration is estimated as a fraction of this daily photosynthetic rate [64]
(Equation (A69)).

It is worth noting that the decaying of plant materials after death is so far not included.
Hence, the resulting nutrient flux from this decomposition, and the nutrient fluxes from
the streambed in general, are not accounted for. However, the oxygen required for the
decomposition of the plant matter is essentially accounted for in the SOD calculations in
the current version of this model.

2.3. Model Uncertainty

Stream water quality is characterized by high spatio-temporal variability, and asso-
ciated models are often applied in data-scarce environments [26]. These variations stem,
for example, from variations in landscape characteristics and catchment topography in the
spatial dimension [18], whereas changes in environmental conditions coupled to variations
in the source, active pathways, and related processes will influence the temporal variability
at hourly, daily, and seasonal scales [14]. Notably, considering these variations and related
uncertainty in any model output may ultimately become crucial, especially if the model
results are used in any kind of decision-making process [65].

Due to the limited availability of associated data, the uncertainty and potential spatio-
temporal variations of the physico-chemical conditions is addressed using the Monte Carlo
(MC) simulation capabilities offered in the STELLA software. Specifically, Latin Hypercube
Sampling technique [66] was used to ensure a proper spread of possible parameter values,
including the extremes, are sampled within the defined parameter space. For each of the
tracked physico-chemical conditions, we carried out 200 realizations, i.e., >10 times the
number of uncertain parameters (Tables S5 and S6) following the recommendations for
this sampling technique [67]. The uncertainty arising from the model structure itself is not
evaluated here, considering the structure presented in this study was developed based
on well-accepted processes. However, possible omitted processes will be discussed in
Section 5.

3. Model Application
3.1. The Usserød Peri-Urban Catchment

The model was applied to a small low-land catchment (ca. 120 km2, mean elevation
30.8 m.a.s.l (DVR.90) located on Sjaelland, 25 km north of Copenhagen, Denmark (Figure 2).
This catchment is drained by Usserød Stream, flowing from its origin at Sjael Lake (via
automatic sluice control) before merging with the Nivå Tributary and discharging in the
Baltic Sea ca. 8000 m to the north. The stream is considered as a small-to-medium stream
at the national level, with width ranging from ca. 2 to 13 m and depth from 0.2 to 1.0 m.
The median flow is ca. 348 L/s−1 for the period 2017–2019 [68] (St.5005). The geology in
the catchment consists of clay tills with embedded sand lenses/layers, which is typical for
this part of Denmark. Groundwater is abstracted from the underlying Danien limestone
aquifer (Figure S2). A detailed description of the catchment can be found in [39].

This catchment is a typical peri-urban area, with a complex mixture of land-use
activities spreading along the stream corridor. Urban (dwelling and industrial), agricultural,
and natural-like areas (mostly secondary forest and surface water) cover 22, 57, and 21%
of the catchment, respectively. The Usserød Stream receives additional flow from the
Donse Tributary, draining mostly natural areas and agricultural lands, before running
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through more agricultural lands in the north direction further downstream. Urban areas
are predominant in the upstream part of the catchment, where two sluices with overflow
and one low head dam with a side derivation ensure a possible flow regulation. These
urban areas are drained by both combined sewer overflow systems (CSO) and separate
storm (rainwater) overflow systems (SSO), the latter discharging stormwater directly into
the stream (Figure S2). Approximately 11 CSO structures are found along the Usserød
stream for a direct discharge of excess sewage water in case of overload of the combined
system network (Figure S3). Wastewater in the catchment is treated by three wastewater
treatment plants releasing effluent into the stream.

Former monitoring activities in the catchment revealed that some physico-chemical
and water quality parameters (e.g., dissolved oxygen, temperature) were below the local
guideline values, with potential impairment of the ecological status of the stream, as
documented in [69,70].
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Figure 2. Overview of the Usserød catchment with stream and tributary (a) general land use [71] and
abstraction well location along the stream, (b) key urban features (WWTP) and available monitoring
network. The reach boundaries are also displayed and set by the monitoring stations for verification
purposes [72]. Each reach is named after the corresponding downstream monitoring station in
this study.

3.2. Available Input Data and Monitoring

A network of continuous monitoring stations deployed in the catchment provided
hourly to daily time series for several of the streams’ hydrological and physical-chemical
properties used for calibration and verification (Table S1, Figure 2). Furthermore, the
dual measurement flow and water level/depth by individual sensors enabled the estima-
tion of an equivalent Manning’s coefficient and the regression parameters employed to
characterize its dynamic variations in our model (Figure S5).

The different sub-catchments and associated reach characteristics (i.e., elevation, land
cover, reach length) were retrieved from [71] for delineation, and zonal statistics operations
were performed in QGIS (v2.18.28, TauDEM package). Meteorological data (air temper-
ature and precipitation time series) were collected from a weather station located in the
catchment [73] (St.5622), while cloud cover was collected from the closest station with
available data [74] (St.06188, ca. 12 km from the catchment).
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Details and technical information about the drainage of urban areas were gathered
from the local drinking water and wastewater company with GIS shape files displaying
the average degree of imperviousness and sewer network type at a spatial resolution
close to cadastral units (Figures S2–S4). Groundwater extraction data were received as
time series on a daily basis and aggregated per reach. The different WWTP influent and
effluent flows, as well as some associated physico-chemical conditions (e.g., temperature,
oxygen saturation, nutrient concentrations), were provided as daily time series for the
largest WWTP and at a lower and variable frequency for the two smallest ones (Table S2).
Almost all CSOs in this catchment are located in the reach Grønnegade-Ådalsvej (except
one in the upstream reach Sjaelsø-Grønnegade), and their overflow volume is closely
monitored by the local municipality [75]. Other data specifically focusing on water quality
(nutrients, chl-a) were available from temporal monitoring (grab samples at monthly to
bi-monthly intervals) at 11 different sampling stations during 2018 and 2019 [39]. The
remaining data were extracted from literature sources: nutrient concentrations in some
specific compartment, BOD, and DO saturation for urban drainage compartment (SSOs
and CSOs), as well as most data related to stream aquatic plant biomass. All input data
and model parameters are provided in Tables S2 and S3.

3.3. Model Set-Up and Calibration
3.3.1. General Set-Up

The Usserød Stream was discretized into three reaches in this catchment so that the
reach outlets coincided with the available monitoring stations and judiciously included
the various different features and input discharges. The reach lengths range from 1500 to
3500 m and are designated (named) according to their outlet points through the rest of
this paper (i.e., Grønnegade, Ådalsvej, Parallelvej, Nivemølle, Figure 2b). The length range
theoretically ensures fully mixed conditions of any substances discharging at the up-
gradient boundary and are short enough to consider the reach geometry as uniform. It
is worth noting that an additional reach was calculated, i.e., the sub-reach Parallelvej
(Figure 2b), to facilitate verification of the DO model result with the only available DO
concentration measurement (sensor) in the catchment. The Donse Tributary contribution
to the streamflow at Brønsholmsdalsvej was estimated using the developed RR module.
Reach characteristics can be found in Table S4.

We used three consecutive years of monitoring station data (2017–2019) for calibra-
tion and verification: the years 2017 and 2018 for the hydrological calibration (these years
were respectively wet and dry, with annual precipitation of 777 and 512 mm, average
cumulated = 712 mm) and year 2019 for the verification (cumulated precipitation = 791 mm).
The results from the aforementioned field investigation provided a dataset to assess the
model’s ability to simulate the dynamic variations of the physico-chemical conditions [39].
The pH monitored at the most upstream part of the catchment was used as input and
assumed uniform throughout all reaches. Such an assumption allows a simulation of
extreme cases as we can suspect the highest variations of pH stemming from the eutrophic
conditions at the source of the catchment and more subtle variation downstream due to the
more controlled variation imposed by the WWTP operations. The model is run using a
daily time-step.

3.3.2. Model Calibration Procedure and Application

The RR model and the CSO sub-module model were automatically calibrated using
the dedicated STELLA module based on a differential evolution algorithm and least-
squares method for error minimization. The calibration was first run on the tributary and
its associated sub-catchment (Fredtoften, Figure 2b), i.e., the most pervious part of the
catchment and relatively free from any urban disturbance and for which the least data were
available. In a second step, this simulation was run for the entire tributary sub-catchment
(Brønsholmsdalsvej, Figure 2b) with the inclusion of the urban areas to verify its satisfactory
performance in peri-urban settings. The calibrated parameter values were used as default
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parameter values in the RR model for the Usserød stream reaches, assuming relatively
uniform geohydrological conditions over such a small catchment size. The groundwater
storage time constant required an extra calibration operation (carried out on the most
upstream reach and assumed equal in the other reaches) due to its strong influence on
the hydrological response (Figure S14). The corresponding initial stock value was here
manually adjusted to fit the start of the simulation period. All other stock initial values
were simply initialized to non-null values, as their influences were negligible beyond the
first few days of simulation. Finally, a non-null leaking term was introduced and calibrated
in the most downstream reach to account for a losing section (flow from the stream towards
groundwater) in periods of low flow. The CSO module calibration was carried out using the
aggregated time series of all CSOs events (arithmetic summation) in this reach, considering
the lump character of our model. The single CSO structure present in the Grønnegade
reach was neglected at this stage. Calibrated values can be found in Table S4.

The automatic calibration for all physico-chemical parameters of interest (i.e., DO,
temp, NH3, NO3, PO4, chl-a) is hindered by the absence of a multi-objective calibration
procedure, complex feedback mechanisms, and limited measurement data. Instead, we
used a multiple steps calibration to get a deterministic solution for the DO concentration,
based on the identified most sensitive parameters (Figure S18): DO saturation of the differ-
ent flow components, heterotrophic respiration, followed by BOD degradation rate and
nitrification. The oxygen yield parameter for the plant biomass was set to realistic values
using the value range retrieved from [63]. Uncertainty and time variation of parameters
and inputs were then addressed by Monte Carlo Simulation. No specific calibration was
used for the temperature simulation that is mostly relying on the input regression model
built from the measurements in the catchment (Figure S6). Finally, the ability of the model
to handle nutrient and chl-a concentrations were carried out via a forcing input function at
Grønnegade station, based on simulated flow, measured concentration data [39], and MC
simulation to address the parameter uncertainty and the current capabilities of the model.
An overview of the overall set-up and calibration procedure of the model can be found in
Figure 3.
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Figure 3. Flowchart depicting the data-driven application of the model. Calibration and verification for the water quantity
module is carried out first, followed by the water quality module, where time-series data are available. Sensitivity analyses
can then be conducted using the calibrated model to determine key water quantity (see Figure S17) and water quality
(Figure S18) variables. These can be used further in a probabilistic application of the model, where the Monte Carlo (MC)
method is applied. All values for these simulations have been derived either from the literature or site-specific (grab sample)
data (see Tables S5 and S6 for values and sources).
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3.3.3. Statistic Indicators Used for Comparison between Model Results and Data

The model’s ability to capture stream water quantity and quality trends was evaluated
using the comparison of plotted time series combined with standard statistical indicators:
RMSE values and coefficient of determination R2 were computed for all quantities and
specifically only when discrete measurement data were available. Nash-Sutcliffe Efficiency
(NSE), Percent BIAS (PBIAS), and RMSE-observations standard deviation ratio (RSR) for
hydrological quantities monitored continuously [76]. Finally, we used a flashiness index to
characterize the impact of the urban compartment on the peri-urban stream flow, Q, and
alteration of the flow regime [77].

4. Results

To demonstrate the model applicability, results for both the calibration and verifica-
tion period are shown for various water quantity and quality indicators in the following
sections. Taking advantage of the numerous stream gauging stations in the catchment,
results could be shown for four locations along the Usserød stream (Grønnegade; Ådalsvej,
Parallelvej, Nivemølle) and two locations along the Donse Tributary (Fredtoften, Brøn-
sholmsdalsvej), listed here in order from up- to downstream flow locations along each
water course (Figure 2). Results have been selected to show the versatility and transfer-
ability within the catchment, as well as the model performance. In terms of water quality,
Parallelvej (Usserød Stream) is shown for DO, the location of the sensor; else results are
shown according to the outlets for the three reaches comprising the Usserød catchment
(Grønnegade, Ådalsvej, Nivemølle).

4.1. Stream Flow and Water Depth

The model performs quite well in terms of flow simulation for Usserød Stream (Figure 4a,b
and Figure S7), with the performance indicators categorized as good or very good for
all reaches in terms of flow (NSE, RSR, PBIAS) for both the calibration and verification
periods (Table 1). In terms of the stream water level (depth), the model was also found to
simulate the dynamics well, both on a daily and seasonal basis, with most indicators in the
satisfactory to good range (except at Grønnegade), and with RMSE values below 0.08 m for
both calibration and verification periods (Table 1, Figure 4a and Figure S8), indicative for
the capability of the model in capturing seasonal variations of stream roughness.

Notably, during the entire simulation period, 2017–2019, 49 CSOs events were recorded
in the Ådalsgade reach (15 below 10 m3/day), of which 11 were dynamically captured by
our model without prior specific knowledge of the network structure (actual number of
outlets) nor actual active control measures (related to CSO release requirements). Deviation
of estimated and measured overflows was, however, relatively high (59% relative deviation
for the events simulated) (Figure S9). Importantly, the simulation underlines the variable
contribution and dynamics of the different flow components. In winter, an important part
of the flow originates from the lake outflow (input) and the pervious areas. In summer, the
tributary at Brønsholmdalsvej becomes negligible, while the WWTP effluents contribute
significantly to the overall stream flow. Stormwater becomes an important contributor
during rain events via the numerous separate system outlets to the stream. CSOs are
sporadically active, but their respective short and intense discharges contribute relatively
little to the flow when aggregated on a daily basis (see discussion in Section 5.1).
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Figure 4. Selected results of flow and depth simulations for Usserød stream (a,b) and the Donse tributary (c) compared
to available measured data. Other simulation results can be found in Figure S7 (Usserød flow), Figure S8 (Usserød water
depth), Figure S9 (Donse tributary flow).

The RR model application comprising the full sub-catchment area (all feature types)
of the Donse Tributary (Brønsholmdalsvej) is shown in Figure 4c for both the calibration
and verification period. Satisfactory agreement between simulated and measured data
could be documented for the calibration period, based on the NSE and RSR criteria, while
PBIAS reached an unsatisfactory value of 30%, caused by an underestimation of the flow
in the second year of the calibration period (Table 1). These all improved to very good
for the verification period, where the effect of the urban drainage system on the flow is
particularly visible. Even on a daily time-step, sharp peaks and an increase in the flashiness
index (RB) at Brønsholmdalsvej are representative of the fast drainage of impervious areas
via separate systems in this part of the sub-catchment (RB = 0.13 and 0.15 at Fredtoften
and Brønsholmdalsvej, respectively). In comparison, for the upstream most pervious



Water 2021, 13, 3002 13 of 40

(agricultural/natural) part of this sub-catchment (Fredtoften), the flow dynamics could be
classified as good or very good (RSR, NSE) for the calibration period, and good (NSE, RSR)
for the verification period (Table 1, Figure S10).

Table 1. Performance indicators for flow and depth simulations, including the Nash-Sutcliffe Efficiency (NSE), Percent BIAS
(PBIAS), RMSE-observations standard deviation ratio (RSR), and Flashiness index (RB, flow only) for all reaches, for both
the calibration and verification period. Performance rating values for all indicators, except RB are indicated as follows [78]:
very good (in bold); good (in italic); satisfactory; unsatisfactory (marked with an x). Additional simulation results can be
found in Figures S7–S9.

Output
Indicator

Calibration Verification

[2017–31 October 2018] [1 November 2018–10 October 2019 */31 December 2019]
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Usserød Stream Donse Trib Usserød Stream Donse Trib

Flow
NSE 0.76 0.73 0.76 0.80 0.57 0.90 0.76 0.87 0.66 0.87
RSR 0.48 0.51 0.49 0.45 0.65 0.32 0.48 0.35 0.58 0.35
PBIAS 3.3 −9.3 0.01 3.3 30 x 10.9 16.4 8.3 −42.7 x −1.3
RB 0.19 0.17 0.20 0.14 0.15 0.18 0.18 0.20 0.13 0.15

Water depth
NSE 0.45 x 0.59 0.67 0.61 0.70 0.60
RSR 0.74 x 0.64 0.57 0.62 0.55 0.63
PBIAS 7.5 −6.1 −7.8 4.4 −4.8 −8.3
RMSE 0.07 0.05 0.07 0.08 0.05 0.08

*: indicator given for the period [1 November 2018–10 October 2019, see Section 5].

The PBIAS indicator, however, highlights specific periods of flow underestimated and
overestimated. For example, the flow at Fredtoften station is overestimated at the end of
the summer-fall season in 2018 and 2019 of the verification period (Figure S10). Such a
discrepancy likely stems from the source of the tributary, consisting of an overflow from a
water impoundment not accounted for in the model, which becomes insignificant in the late
summer time. Conversely, PBIAS indicates a flow underestimation during the calibration
period at Brønsholmdalsvej. This deviation could potentially be caused by an extension
of the separate system’s network, not aligned with the natural delineation of the sub-
catchment, and therefore collecting and adding stormwater from an adjacent sub-catchment.
Nevertheless, we believe these results confirm the implemented approach is suitable for
capturing the flow dynamics from urban and agricultural/natural catchment features.

4.2. Physico-Chemical and Water Quality Parameters
4.2.1. Stream Temperature

The simulation of daily stream water temperature compares very well with the mea-
surements for both the calibration and verification period at Parallelvej (Figure 5; R2 = 0.90,
RMSE = 1.6 ◦C). Moreover, the narrow percentile spread for the MC simulation results
(results not shown) suggests that the uncertainty related to the relevant model parameters
for simulating stream temperature is not critical (i.e., low sensitivity parameters) and that
the daily stream temperature variations are mostly driven by the daily variation in air
temperature. Similar observations were made in other studies ([54,79]) where the small
stream size and relatively shallow depth resulted in a low water thermal inertia and fast
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equilibrium of water temperature, leading in turn to important seasonal water temperature
variations in the investigated streams.

Water 2021, 13, x FOR PEER REVIEW 14 of 40 
 

 

The simulation of daily stream water temperature compares very well with the meas-

urements for both the calibration and verification period at Parallelvej (Figure 5; R2 = 

0.90, RMSE = 1.6 °C). Moreover, the narrow percentile spread for the MC simulation re-

sults (results not shown) suggests that the uncertainty related to the relevant model pa-

rameters for simulating stream temperature is not critical (i.e., low sensitivity parameters) 

and that the daily stream temperature variations are mostly driven by the daily variation 

in air temperature. Similar observations were made in other studies ([54,79]) where the 

small stream size and relatively shallow depth resulted in a low water thermal inertia and 

fast equilibrium of water temperature, leading in turn to important seasonal water tem-

perature variations in the investigated streams. 

 

Figure 5. Simulation results for the stream temperature compared to grab sample measurements at Parallelvej (red marked 

circle in map). The grey ribbon indicates the calibration period for the RR model, the rest of the time series being the 

verification. 

4.2.2. Dissolved Oxygen Concentration 

Dissolved oxygen concentrations in the stream are relatively well captured by the 

model with a coefficient of determination R2 for the daily average concentration ranging 

from 0.58 to 0.63 for the calibration and verification period, respectively, compared to the 

sensor data at Parallelvej (Figure 6a,b). The computation at a sub-daily time-step also com-

pares relatively well with observations in terms of the overall dynamic trend (Figure 6c), 

albeit with some short-term deviations. The observed discrepancies in amplitude at such 

a time discretization is likely related to the daily input data (not available at higher fre-

quency), shadow effects not properly captured (either riparian or in-stream), and the un-

certainty arising from the aggregation of aquatic plant biomass into two groups, as cor-

roborated by the MC simulation results (most of the variations and the grab samples at 

Parallelvej and Nivemølle lie within the estimated percentiles, Figures 7 and 8b). The most 

important discrepancy between simulated and observed daily amplitude is found during 

the period March–May 2019 (with grab sample measurements lying outside of the 10–90-

percentile for this period, Figure 7). This deviation is possibly connected to a suspended 

algae or benthic/epiphytic community bloom stimulated by favorable spring light condi-

tions that particular year and would require an additional dedicated biomass stock in the 

model. Similar ecological events have been witnessed in other streams with high nutrient 

levels at similar periods of the year, with, for instance, phytoplankton blooms during the 

spring period in [80,81] in England. Another algae bloom was also observed at the 

stream’s source Sjæl Lake in August 2019 (visual inspection). In terms of time variation, 

the diel oscillation and max. DO concentration resulting from photosynthetic activity oc-

cur relatively late compared to the simulation for point C (Figure 6c) and may possibly 

Figure 5. Simulation results for the stream temperature compared to grab sample measurements at Parallelvej (red
marked circle in map). The grey ribbon indicates the calibration period for the RR model, the rest of the time series being
the verification.

4.2.2. Dissolved Oxygen Concentration

Dissolved oxygen concentrations in the stream are relatively well captured by the
model with a coefficient of determination R2 for the daily average concentration ranging
from 0.58 to 0.63 for the calibration and verification period, respectively, compared to
the sensor data at Parallelvej (Figure 6a,b). The computation at a sub-daily time-step
also compares relatively well with observations in terms of the overall dynamic trend
(Figure 6c), albeit with some short-term deviations. The observed discrepancies in ampli-
tude at such a time discretization is likely related to the daily input data (not available at
higher frequency), shadow effects not properly captured (either riparian or in-stream), and
the uncertainty arising from the aggregation of aquatic plant biomass into two groups, as
corroborated by the MC simulation results (most of the variations and the grab samples
at Parallelvej and Nivemølle lie within the estimated percentiles, Figures 7 and 8b). The
most important discrepancy between simulated and observed daily amplitude is found
during the period March–May 2019 (with grab sample measurements lying outside of
the 10–90-percentile for this period, Figure 7). This deviation is possibly connected to a
suspended algae or benthic/epiphytic community bloom stimulated by favorable spring
light conditions that particular year and would require an additional dedicated biomass
stock in the model. Similar ecological events have been witnessed in other streams with
high nutrient levels at similar periods of the year, with, for instance, phytoplankton blooms
during the spring period in [80,81] in England. Another algae bloom was also observed at
the stream’s source Sjæl Lake in August 2019 (visual inspection). In terms of time variation,
the diel oscillation and max. DO concentration resulting from photosynthetic activity occur
relatively late compared to the simulation for point C (Figure 6c) and may possibly stem
from an unknown sensor timestamp shift, local variability in environmental conditions,
or high macrophyte density in the most upstream part of the catchment combined with a
much lower reaeration rate than estimated (results not shown). This point will be further
discussed in the next section.
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hourly DO for a selected summer period showing the diurnal variation induced by plant photosynthesis/respiration.
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Figure 7. MC simulation results at Parallelvej for the DO concentration (gray and black shading/lines) compared to the
online sensor (red line; located under a bridge in the shade) and grab sample measurements (red circles, measured in the
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resulting from photosynthesis/respiration. Input parameter distributions can be found in Table S5.



Water 2021, 13, 3002 16 of 40

Water 2021, 13, x FOR PEER REVIEW 17 of 40 
 

 

underestimation of the suspended chl-a in spring (March–May), coinciding with the afore-

mentioned underestimation of DO concentrations by our model (Figures 6a and 7). These 

remarks (combined with the high density of emergent aquatic plants observed in this 

reach) support the assumption of an epiphyte or benthic algae community development 

at that time, possibly washed away by the stream water flow. Similar observations were 

made in shallow stream systems in the same country, with epiphyte and benthic microal-

gae bloom from March to April lost later in the season during high flow episodes [88]. 

 

Figure 8. MC simulation results at Nivemølle. (a) temp; (b) DO; (c) NO3-N; (d) NH4-N; (e) PO4-P and (f) susp. chla com-

pared to available grab sampled measurements (red circles). The dashed grey lines for the DO concentration (b) highlight 

Figure 8. MC simulation results at Nivemølle. (a) temp; (b) DO; (c) NO3-N; (d) NH4-N; (e) PO4-P and (f) susp. chla
compared to available grab sampled measurements (red circles). The dashed grey lines for the DO concentration (b) highlight
the 10–90 percentile for the sub-daily DO variations. Results are displayed for the verification period only, with grab samples
for nutrients and chla combined with simulated flow used as forcing input at the most upstream station Grønnegade and at
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Overall, the model satisfactorily captures the seasonal trend for dissolved oxygen and
highlights a potentially critical state in summer (NSE = 0.52 and 0.59 for calibration and
verification period, respectively). Low average DO concentrations corresponding to low
saturation levels are indeed observed and simulated in the period July–September for both
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the calibration and verification periods and possibly driven by sustained heterotrophic
respiration (Figure 6a and Figure S11). Interestingly, the model, as applied in this study (i.e.,
in data-driven mode), was unable to capture the low daily concentrations between May and
July 2019. Such a dynamic trend does not seem to be related to input data uncertainty, as the
MC simulation did not capture these events either (Figures 6a and 7). The overestimation
of the simulated DO concentration from May to July could be related to an important
heterotrophic respiration event, stemming from (1) scouring, settling, and decomposition
of the possible algae bloom in the previous months, or/and (2) a high dissolved organic
matter (DOM) load during high flow prior to a sustained low flow period in spring (see the
simulated/observed high flow in April 2019, followed by a low flow period, Figure 4). Such
a phenomenon was recently reported in [82], where an important DOM load following
a high flow and episode was the main explanatory factor for the low DO concentrations
observed in the river Thames, UK.

4.2.3. Nutrient Species and Chlorophyll-a

In terms of inorganic nitrogen, the estimated nitrate concentrations are relatively well
captured, with most of the grab sample concentrations falling within the 10–90 percentile
of the MC simulation results (Figure 8c and Figure S12). The ammonium concentrations
seem to be well estimated in winter but overestimated in summer (Figure 8d). This over-
estimation seems to affect only the last simulated reach of the stream (Figure S13), where
an important coverage of macrophytes and emergent plants is observed (data not shown).
The relatively good simulation results for the NO3-N concentrations rule out a possible un-
derestimation of the nitrification process, suggesting instead an assimilation preference for
NH4-N (rather than NO3-N) by the aquatic plant biomass. Such an assimilation preference
has also been reported in [83,84], for instance, using controlled releases of nutrient pulses
and stable isotope analysis, respectively.

Orthophosphate concentrations exhibit the opposite trend with a significant under-
estimation of concentrations during an important part of the summer at the beginning of
autumn, specifically in the last simulated reach (June–October, Figure 8e and Figure S14).
This result highlights a possible omission of an important source-pathway (e.g., wash-off
from agricultural lands, septic tank drainage). Alternatively, and considering the contin-
uous overestimation in the summer period for all associated sampling periods, a diffuse
release from phosphorous stored in the streambed sediments in the summertime cannot be
excluded. Such processes have been observed and described in lentic environments [85],
but also in streams where phosphorous becomes available by desorption and fueled by
enhanced decomposition of organic matter and lower oxygen levels at higher temper-
atures [56,86]. P-release from the sediment in the urban stream environment has also
been documented when coupled with low DO concentrations ([87]), although often in
connection with lower NO3 concentrations compared to the present study.

Finally, the model simulation for suspended chl-a compares relatively well with
the few available observations, and despite the lack of data and characterization of the
suspended algae species assemblage in the stream (Figure 8f). The simulations in the
different reaches show that an important part of the suspended chl-a actually originates
from the most upstream reach, likely as an output from the eutrophic lake (Figure S15). At
the most downstream station, Nivemølle, the percentile range for the simulations clearly
shows an underestimation of the suspended chl-a in spring (March–May), coinciding with
the aforementioned underestimation of DO concentrations by our model (Figures 6a and 7).
These remarks (combined with the high density of emergent aquatic plants observed in this
reach) support the assumption of an epiphyte or benthic algae community development
at that time, possibly washed away by the stream water flow. Similar observations were
made in shallow stream systems in the same country, with epiphyte and benthic microalgae
bloom from March to April lost later in the season during high flow episodes [88].



Water 2021, 13, 3002 18 of 40

5. Discussion

This SD model and lumped module formulation, implemented as a semi-distributed
model structure to capture key spatial variability, enabled the computationally quick and
effective simulation of hydrology and water quality variations in a small peri-urban stream.
Notably, one of the great advantages of the lumped formulation is a fast simulation time,
providing a good opportunity to account for data uncertainty and their inherent variability
(i.e., through MC simulation).

In terms of the hydrological module, the model and the implemented structure cap-
tured well the very dynamic contribution of flows stemming from urban and more pervious
areas that will influence water quality (with performance indicators ranging from satisfac-
tory to very good). The good results in terms of water depth (RMSE < 0.1 m) highlight the
importance of a dynamic and variable Manning’s coefficient, especially for small stream
systems like the one modeled here, where shallow water depths combined with under-
water vegetation have a strong influence. On the water quality side, the representation of
in-stream processes and simulation results for stream temperature, oxygen, and macronutri-
ents (NH4-N, NO3-N, PO4-P) were deemed acceptable compared to the available measured
data (based on RMSE and coefficient of determination).

Importantly, the observed discrepancies allowed us to identify key processes affecting
the hydrology or water quality in a mixed land-use environment, due in part to the
transparency of the model structure allowing the direct inspection of cause-effect system
feedbacks (built using an SD approach), as well as potential model improvements and
limitations (both discussed further below). This could facilitate a more in-depth analysis of
the investigated stream system, which can sometimes be challenging with more complex
model structures [89].

5.1. Process Understanding and Model Application

The combined simulation supported by a rich dataset for our application gives some
insightful information on the dynamics processes at stake in peri-urban catchments with
strong implications on the general stream water quality.

Measurement of nutrient fluxes on a seasonal basis in this catchment showed very
dynamic contributions (e.g., nutrients discharge) in the different reaches, confounding
the identification of detrimental impacts from sources and land use [39]. The simulations
highlight this important dynamic contribution of the different flow components (Figure 9),
and consequently, the challenges with respect to maintaining good water quality in peri-
urban stream systems. There is not one single dominant component, and the effects
from the different contributions and associated loadings are naturally very dependent
on the local catchment attributes (e.g., degree of urbanization, land-use, type and extent
of drainage system). These local differences need to be accounted for when designing
restoration strategies that target stream water quality in peri-urban systems [90]. In our
case, the stream reaches could be further divided to check that the current model setup
appropriately captures the key attributes governing the conditions in the stream system.

In terms of CSO contribution, it is worth mentioning that the simulation on a daily
basis shows that a single CSO event has a quite limited effect in terms of flow due to its
relatively short and transient properties (Figure 9b,d). Nevertheless, the impairment related
to particle load (and related degradation) and pollutants (dissolved and particle-bounded)
is non-negligible for these structures and underlined as a possible reason for ecological
degradation in this catchment, but it is out of the scope of the model at this time.
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The results from the stream water quality simulation highlight important seasonal
variations of stream water temperature that may be amplified in peri-urban settings.
Notably, here, temperatures above 21 degrees Celsius (local threshold value) are estimated
during the summer season, with potential adverse effects in terms of DO concentration
(due to decrease in DO saturation) and on the stream biota [91]. The model indicates a
limited stream thermal inertia (driven by the shallow depth and fast equilibrium rate with
the atmosphere, not shown), resulting in the stream water temperature being strongly
correlated to the air temperature as the main explanation. Furthermore, the extent of
urban and impervious areas and relative contributions to the peri-urban stream system
can exacerbate this problem. Generally, air temperatures in the urban areas are higher,
and runoff on heated impervious areas drained via a separated system can contribute as
well [92].

The simulation of DO concentrations shows high heterotrophic respiration events
during the summer and beginning of autumn (May–October) that appear as the cause
of sustained periods at relatively low daily DO levels witnessed in this catchment. This
observation is in agreement with freshwater ecosystem metabolism being generally het-
erotrophic [64]. However, this heterotrophic state seems highly dynamic in time and space
and does not always result in significant DO depletion (see, e.g., the difference in measured
DO saturation levels between two consecutive years, 2018 and 2019, in Figure S11). Several
studies highlighted that urbanization leads to increased and highly dynamic loads of more
labile dissolved organic matter fraction and enhanced heterotrophic respiration [93,94],
which will constitute a challenge in peri-urban settings considering the myriad of deliv-
ery pathways. Another possible driving mechanism could be algae blooms phenomena
followed by settling and decomposition (as discussed in Section 4.2.2) or aquatic plant
biomass, with macrophytes strongly affecting the local flow conditions, resulting in flow
velocity reduction, fine sediment accumulation, and ultimately, enhanced metabolism in
lowland streams, as shown in [56] for another small shallow stream. To this day, the model-
ing of this type of interaction and understanding of heterotrophic respiration is still limited
(but see [95] and a coupled model of stream metabolism and microbial biomass, calibrated
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on long-term monitoring series ) and constitute an important source of uncertainty for any
DO simulation in water quality models [82].

Finally, the sustained period of low dissolved oxygen previously described may also
create favorable conditions for the enhanced release of nutrients. The simulations revealed,
for example, an underestimation of phosphorus concentrations compared to the observed
data. While unknown sources such as agricultural drainage or septic tanks cannot be
excluded in peri-urban catchments and should be investigated further, several studies
pointed out an enhanced release of reactive and legacy phosphorus in summer periods
under low DO conditions for both mixed and single land-use streams [56,85,87]. Such a
process can become an important feedback mechanism. The released nutrients sustain
aquatic plant biomass and favor increased organic matter settling and decomposition and,
thus, oxygen depletion as previously mentioned, especially if P is a limiting factor or other
sources of reactive phosphorus (e.g., urban effluents) are removed or controlled. Notably, in
the investigated catchment, the push towards green transition solutions for more resource
and energy-efficient water treatment systems may result in centralized systems, with the
suppression of urban effluent outlets [96]. While the benefit of such a solution is obvious
in terms of overall environmental impact (e.g., carbon reduction and energy savings), is
evident, it may come with trade-offs for the receiving waters (impacting biodiversity) that
should be considered holistically, e.g., enhanced residence time due to flow reduction,
lower depth, reduced thermal inertia, and more particle settling triggering some of the
impairment mechanisms previously described.

5.2. Future Model Development and Data Needs

The results from the hydrological model were generally simulated well; however,
some of the deviations observed in the period of extreme flows could not be entirely
captured. The verification period for the three reaches comprising Usserød Stream finished
10 October 2019 (vertical dashed line in Figure 5), when the simulation started to deviate
from the observations significantly. Floodplain inundation (flooding likely associated with
a reduced channel capacity and high flows) strongly altered the flow regime and could
not be handled with the current model structure (1-D system). Secondly, the introduction
of a leaking term in the most downstream reach (see Section 3.3), based on local water
abstraction data, was deemed necessary to improve the results during the period of low
flows in summer.

Although a local change in geology has not been considered (we assume the calibrated
parameters were similar between all reaches), this correction highlights the dynamic
interaction between both groundwater and surface water especially important in small
stream systems [97,98]. This interaction is challenging to handle in hydrological modeling,
though critical in lowland catchments, and should be addressed to better understand
the flow dynamics in low flow periods (see, e.g., the lump formulation and the coupling
between surface water and groundwater using a lump hydrological model formulation
in [99]). Finally, the period of overestimation for the flow at the beginning of the autumn
period in the Donse Tributary (in connection with a possible water impoundment), the
deviation between simulated and measured CSOs or the use of some time series (e.g.,
WWTP effluent; lake sluice data at the most upstream point) underline the importance of
anthropogenic features affecting the hydrology and the required knowledge of their active
control and stakeholder engagement for improved modeling, as also pointed out in [26].

The simulations for water quality in the stream are currently limited to the in-stream
process. Therefore, a recommended next step would be to address the land source dy-
namics (e.g., fertilizer and nutrient applications, dissolved organic matter source) and
the multiple flow contributions. The simulation of DO concentrations at the sub-daily
time step highlights the need for improved characterization of the influence of the aquatic
plant biomass, both in terms of spatial coverage but also in terms of autotroph group
dynamics, to fully capture the overall dynamics of DO in small peri-urban streams. This
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task, however, may need to rely on more spatially detailed and high-frequency data, very
often not available [81,100].

Furthermore, the observed time shift for the diel oscillation cycle points towards
potential uncertainty in the reaeration formulation. This uncertainty is especially high for
shallow streams but is inherent to any water quality model. It has been observed in [101]
that errors between measured (gas tracer studies) and estimated reaeration coefficient can
be up to 30–50%, and even >100% depending on the used formulation and depth/water
velocity. The aquatic plant biomass will influence the hydrological model and should ideally
have a feedback effect on the hydraulic roughness relationship currently implemented,
in addition to their potential to force the settling of suspended sediments. Finally, the
deviation in terms of orthophosphate concentration in summertime highlights the potential
need for a more detailed process description of the streambed compartment in terms of
nutrient cycling and role as a pollutant-bound stock, but also as the scene for complex
heterotrophic respiration processes.

6. Conclusions

In this study, we developed an integrated (water quantity and quality) model using
a system dynamics approach to investigate the variations and interactions between the
flow and physico-chemical parameters (stream temperature, dissolved oxygen, nutrients,
and chlorophyll-a) in a peri-urban stream on a daily basis. To our knowledge, this is the
first SD model investigating stream hydrology and water quality within a mixed land-use
catchment context.

• In terms of hydrology, the model performs as well as other integrated models (see,
for instance, the flow simulations results in [82]) with performance indicators, e.g.,
NSE/RSR, ranging from very good to satisfactory for all reaches in the verification
period for both flow and depth variation. It also gives satisfactory results in terms of
physico-chemical conditions (stream temperature and dissolved oxygen, NSE/RMSE
performance indicators). Notably, the model combined with a rich dataset highlighted
the very dynamic contribution of flows stemming from urban and more pervious areas
that will greatly influence water quality: inflow of labile dissolved organic matter
from the numerous flow pathways triggered in periods of high flow, followed and/or
combined with settling and decomposition of algae in periods of low flow may fuel
an important heterotrophic activity leading to low dissolved oxygen levels.

• The developed model allows the use of probabilistic Monte Carlo simulations to
account for the high temporal variability and uncertainty inherent to water quality
parameters. Notably, with respect to nutrients, it showed a potential preference for
ammonium uptake by macrophytes compared to nitrate. The coupled investigation
between simulation and measurements also indicates a potential for remobilization of
phosphorus from the sediment in peri-urban streams, which may constitute a critical
source for nutrients should other sources (e.g., WWTP effluent) be removed or reduced.
Such a process should consequently be accounted for in water quality modeling.

• The use of the model in combination with a rich dataset demonstrates, for the first time,
that water quality impairments could be further exacerbated by the implementation
of a green transition solution (here, rerouting the urban effluents out of the stream
system). The sustainability of these solutions should therefore be holistically evaluated
to fulfill multi-objective strategies and limit adverse environmental trade-offs.

Overall, the integrated model was valuable in uncovering key insights into the dy-
namics of a peri-urban stream and, in combination with measured data, revealed that
these types of lowland stream catchments may have a high potential to be impacted by
green transition solutions. We expect the model’s flexibility, simple structure, and use of
system dynamics will constitute a strong advantage for additional stakeholder engagement
activities in this catchment and facilitate its ease of transferability and application in others.
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Appendix A

Appendix A.1. List of Variables Describing the System Considered in Figure 2

Table A1. Catchment and reach.

Parameters Unit Description Data Type Value

A m2 Subcatchment area Input
L m Reach length Input All inputs are
b m Average stream reach width Input reach dependent
d m Average stream reach depth Calculated See Table S4
s - Average stream reach slope Input
V m3 Water volume in reach Calculated
U m/s Stream flow velocity Calculated

Table A2. Hydrology—natural flow component.

Parameters Unit Description Data Type Value

P mm·day−1 Precipitation Input [73]
Ta ◦C Air temperature Input [74]
Re J/

(
m2·d

)
Extraterrestrial radiation Input [102]

n S/m1/3 Manning’s coefficient Calculated
SM mm Soil moisture reservoir Calculated

ROFF mm Overland flow reservoir Calculated
GW mm Groundwater reservoir Calculated

STREAM mm Stream reservoir Calculated
I mm·day−1 Infiltration Calculated

AET mm·day−1 Actual Evapotranspiration Calculated
PET mm·day−1 Potential Evapotranspiration Calculated
Perc mm·day−1 Percolation Calculated

Qrunoff mm·day−1 Overland flow Calculated
Qui mm·day−1 Upper interflow Calculated
Qli mm·day−1 Lower interflow Calculated

Baseflow mm·day−1 Baseflow Calculated
Streamflow m3·day−1 Stream flow Calculated

FC mm Field capacity equivalent Parameter

LPET mm Soil moisture threshold for
Potential Evapotranspiration Parameter

β - Evapotranspiration reduction
factor Parameter

W - Wetness index Calculated

SMT mm Soil moisture
threshold—upper interflow Parameter

RTC day Runoff time constant Parameter
UITC day Upper interflow time constant Parameter
LITC day Lower interflow time constant Parameter
PRTC day Percolation time constant Parameter
BTC day Baseflow time constant Parameter
SDR day Stream discharge rate Parameter

GWAR m3·day−1 Groundwater abstraction rate Input [103]
contribGWAR - Scaling factor for GWAR Parameter Reach dep. Table S4

GSI - Factor for loosing stream
section Parameter Reach dep. Table S4



Water 2021, 13, 3002 24 of 40

Table A3. Hydrology—urban component.

Parameters Unit Description Data Type Value

Qwwtp m3·day−1 WWTP effluent flow Input [103]
fimp - Fraction of impervious area Input [103], Figure S4

fcs - Combined system fraction
impervious areas Input [103], Figure S4

SS mm Separated system reservoir Calculated

Qurban_cs+Qdry m3·day−1 WWTP effluent flow in
combined system Input [103]

Qurban_ss m3·day−1 Separated system flow Input [103]
SSTC day Separated system time constant Parameter 0.05 (calibrated)
CSTC day Drainage outflow time constant Parameter 0.5 (calibrated)

CSOTC day Overflow combined system time
constant Parameter 0.95 (calibrated)

Qdry m3·day−1 Average dry discharge WWTP
(black grey water) Parameter [103]

QMAX m3·day−1 Max flow capacity towards
WWTP (combined system) Parameter 50,000 (Calibrated)

Vthreshold m3 Max volume capacity—retention
basin (combined system) Parameter 10,000 (Calibrated)

Table A4. Temperature.

Parameters Unit Description Data Type Value

Tw ◦C Stream water temperature Calculated
Te ◦C Equilibrium temperature Calculated
ρ kg/m3 Mass density Parameter 1000

Cp J/(◦C·kg) Specific heat capacity water Parameter 4182
K J/

(
m2·◦C·kg·day

)
Heat transfert coefficient Parameter 1.9 × 106 [104]

Table A5. Oxygen and nutrients.

Parameters Unit * Description Data Type Value

Alt m Average altitude Input 8 [71]
Sal ppt

(
g·L−1

)
Salinity Input 0

DO mg·L−1 DO concentration Calculated
DOsat mg·L−1 DO saturation concentration Calculated

pH - Input
ka day−1 Reaeration rate Calculated
θa - Temperature correction factor reaeration Parameter 1.024 [60]

BOD mg·L−1 Carbonaceous Biochemical Oxygen
Demand Calculated

ks
d day−1 Degradation rate for organic matter Calculated

k20
d day−1 Reference degradation rate for organic

matter (20 ◦C) Parameter 0.5 [60]

θBOD - Temperature correction factor BOD Parameter 1.047 [62]
ks day−1 Settling rate, organic matter Calculated

Vs,BOD m·day−1 Settling velocity, organic matter Parameter 0.1 [60]

NBOD mg·L−1 Nitrogenous Biochemical Oxygen Demand
(nitrification) Calculated

ron g·gN−1 Stoichiometric ratio DO consumed during
nitrification Parameter 4.57 [60]

knit day−1 Nitrification rate Calculated
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Table A5. Cont.

Parameters Unit * Description Data Type Value

k20
nit day−1 Reference nitrification rate (20 ◦C) Parameter 0.3 [62]

θnit - Temperature correction factor nitrification Parameter 1.085 [62]
pHnit_corr - Correction factor. pH effect on nitrification Calculated

fDO_nit_corr - Correction factor. DO concentration on
nitrification Calculated

NH4 mgN·L−1 Ammonium concentration Calculated
NO3 mgN·L−1 Nitrate concentration Calculated
PO4 mgP·L−1 Orthophosphate concentration Calculated

FNH4,pref - Preference ratio for nitrogen assimilation Calculated

kNH4,pref mgN·L−1 Half saturation constant for ammonium
preference Parameter 0.05 [60]

kdenit day−1 Denitrification rate Calculated
k20

denit day−1 Reference denitrification rate (20 ◦C) Parameter 0.1 [62]

θdenit - Temperature correction factor
denitrification Parameter 1.045 [62]

ks,denit_lim mg·L−1 Half saturation constant oxygen limitation Parameter 0.1 [62]
SOD mg·L−1·day−1 Sediment Oxygen Demand Calculated

SODBG g·m−2·day−1 Background value Sediment Oxygen
Demand Calculated

SODenhanced,mac mg·L−1·day−1 Enhanced heterotrophic respiration,
macrophyte effect Calculated

SOD20
o g·m−2·day−1 Reference Sediment Oxygen Demand (20

◦C) Parameter 1 [62]

θSOD - Temperature correction factor Sediment
Oxygen Demand Parameter 1.065 [62]

ks,o_lim mg·L−1 Half saturation constant for SOD oxygen
limitation Parameter 1.4 [62]

* All units of concentration, e.g., mg·L−1 corresponds to mgO2 by default.

Table A6. Freshwater plant and algae biomass.

Parameters Unit * Description Data Type Value

Chlasus µgChla·L−1 Suspended algae concentration Calculated

Chlamac µgChla·L−1 Plant biomass concentration
(macrophyte—epiphyton) Calculated

kgrowth,sus/mac day−1 Algae/plant biomass growth rate Calculated
kresp,sus/mac day−1 Mortality/respiration/excretion rate Calculated

kset,sus day−1 Settling rate suspended algae Calculated
Vset,sus m·day−1 Settling velocity suspended algae Parameter 0.1 [62]

Gmax,sus day−1 Optimum growth rate under no
limitation, suspended algae Parameter 2 [62]

Gmax,mac day−1 Optimum growth rate (macrophyte)
no limitation Parameter 0.1 [105]

fθ - Temperature effect function on
biomass growth rate Calculated

fl - Light effect function on biomass
growth rate Calculated

fn,p - Nutrient effect function on biomass
growth rate Calculated

ks,P_lim mgP·L−1 Half saturation constant phosphorus
limitation of biomass growth Parameter 0.025 [62]
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Table A6. Cont.

Parameters Unit * Description Data Type Value

ks,N_lim mgN·L−1 Half saturation constant nitrogen
limitation of biomass growth Parameter 0.0005 [62]

Lphoto - Photoperiod of the day Input [102]

γl,background m−1 Light attenuation coefficient—non
biomass materials Parameter 0.5 [106]

γl,bio_sus m−1·L·mgchla−1 Light attenuation coefficient
factor—suspended algae Parameter 0.035 [60]

IA ly·day−1 Average light radiation over daylight
hours Calculated

Iopt ly·day−1 Optimal light radiation for plant
growth Parameter 200 [62]

Re ly·day−1 Mean extraterrestrial radiation over
the daylight hours Input

∅atm - Atmospheric absorption (cloud free) Parameter 0.38 [107]
∅PAR - Ratio PAR/global horizontal radiation Parameter 0.47 [108]

∅shadow - Radiation attenuation—shadow effect
at ground level Input 0.1 (estimate)

∅reflec - Radiation attenuation due to reflection
on the stream surface Parameter 0.1 [106]

∅cloud - Radiation attenuation due to could
cover Calculated

N okta Cloudiness data Input [74]

roa mg·µgChla−1 Oxygen production rate per plant
biomass Parameter 1.5 [60,63]

P mg·L−1·day−1 Mean daily photosynthesis rate Calculated
AR mg·L−1·day−1 Autotrophic respiration rate Calculated

ARratio - Autotrophic respiration ratio Parameter 0.45 [64]
PMAX mg·L−1·day−1 Max photosynthesis rate Calculated

EMratio - Ecosystem metabolism ratio Parameter 0.26 (Calibrated)

* All units of concentration, e.g., mg·L−1 corresponds to mgO2 by default.

Additional details regarding the input data (catchment and reaches, as well as physico-
chemical conditions of the different flow components) can be found in Table S4.

Appendix A.2. Hydrological Model

Appendix A.2.1. Pervious Area Flow Component

The natural RR component of the streamflow is calculated using a lump model struc-
ture inspired by [63], with an additional fast runoff component included. It consists of
3 main stocks (or reservoirs): soil moisture, surface runoff (overland flow), and groundwa-
ter, which contribute to the hydrological response of the investigated catchment (see also
Figure 2).

The first stock represents the soil moisture and is controlled by the following water
balance equation with all parameters expressed in [mm/day]:

dSM
dt

= I − AET + Perc + Qui + Qli + Qrunoff (A1)

where I is the infiltration, AET is the actual evapotranspiration, Perc is the flow towards
the groundwater reservoir, Qui , Qli represent an upper and lower interflow, and Qrunoff is
an overland flow (Figure 2).

The infiltration I is dependent on the saturation degree of the soil, defined by:

I = P(1 − W)
(
1 − fimp

)
(A2)
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where P [mm/day] is the precipitation, fimp [-] is the aggregated imperviousness of the
sub-catchment, and W [-] an index representing the “wetness” based on the estimated soil
moisture, SM, following the non-linear relationship:

W =

(
SM
FC

)β

(A3)

where FC [mm] represent a field capacity, and β a calibrated index.
The aggregated imperviousness fimp factor is estimated as a weighted mean value per

sub-catchment based on spatial analysis of imperviousness per cadastral units (0: natural
catchment, to 1: fully impervious catchment).

The part of precipitation not infiltrating corresponding to a saturated soil moisture
stock, P·W

(
1 − fimp

)
, is routed to the stream as an overland flow Qrunoff via a runoff stock

ROFF with a relatively short time constant:

dROFF
dt

= P·W
(
1 − fimp

)
− Qrunoff (A4)

Qrunoff =
1

RTC
·ROFF (A5)

where RTC [days] is a time constant associated to the ROFF stock.
The evapotranspiration term AET is dependent on the degree of saturation of the soil

and is controlled by a moisture ratio defined by SM
LPET ; then, evapotranspiration is varying

following a piecewise linear function:

AET =
SM

LPET
PET if

SM
LPET

< 1 (A6)

AET = PET if
SM

LPET
> 1 (A7)

where LPET is a calibrated moisture threshold [mm], and PET is potential evapotranspira-
tion [mm·day−1].

PET is estimated in our model using the following formulation [109]:

PET =
Re
γρ

·Ta + 5
100

(A8)

where Re is the daily extraterrestrial radiation [MJ·m−2·day−1], Ta is the air temperature
[◦C], ρ is the mass density of water, and γ the latent heat of vaporization [MJ·kg−1].

Qui , Qli are two flows out of the soil moisture stock corresponding to shallow ground-
water flow, typically interflows. Qui is only active when the soil moisture is above a certain
threshold, according to:

Qli = SM· 1
LITC

(A9)

Qui = MIN(0, (SM − SMT)· 1
UITC

) (A10)

where UITC, LITC are the stock time constants used for calibration [days], and SMT [mm]
a moisture threshold for activation of the upper interflow.

Finally, percolation Perc is a downwards water movement from the soil moisture
stock towards the groundwater reservoir GW, which can be reduced by potential deep
groundwater abstractions GWAR, and contributes to the stream Baseflow:

dGW
dt

= Perc − Baseflow − Abstraction (A11)

Perc = SM· 1
PRTC

(A12)
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Baseflow = GW· 1
BTC

(A13)

Abstraction = contribGWAR·GWAR (A14)

where PRTC, BTC are the reservoir time constants used for calibration [days]. The coeffi-
cient contribGWAR accounts for the fact that abstraction may occur directly from this stock
(contribGWAR = 1), but could also be impacted only by an abstraction from a deeper aquifer,
one that may not be bounded by the sub-catchment delineation (contribGWAR < 1).

All these flow components (Equations (A5), (A9), (A10), and (A13) are scaled by the
sub-catchment area and summed within a stream water reservoir STREAM to obtain the
streamflow [m3/day].

dSTREAM
dt

= streamflow (A15)

streamflow = STREAM· 1
SDR

(A16)

where SDR is a reservoir time constant [days].

Appendix A.2.2. Impervious Areas Flow Component (Urban)

The part of precipitation P·fimp not naturally drained by the sub-catchment, as de-
scribed in Section A.1.1, is routed to the stream through the urban compartment, either
by separate or combined systems. We assume that the drainage network follows the sub-
catchment delineation, which is deemed reasonable if the network is drained by gravity.
Thus, any precipitation collected by the urban compartment within the sub-catchment will
be discharged into its associated reach. The general water balance equation for the urban
compartment, expressed in [m3/day] is:

A·P·fimp = Qurban_cs + Qdry + Qurban_ss + [CSOs] (A17)

where A is the sub-catchment area [m2], P [mm/day] is the precipitation, fimp [-] is the
aggregated imperviousness of the sub-catchment, Qurban_cs + Qdry [m3/day] correspond to
a WWTP effluent (wet and dry discharge), if relevant for the investigated reach, Qurban_ss
is the flow component generated by precipitation and routed to the stream through the
separate system. Finally, [CSOs] are possible overflow discharges from a combined sewer
overflow system. Qurban_cs + Qdry is currently input as a time series of WWTP effluent in
this version of the model.

Separate systems flow Qurban_ss is estimated by a linear reservoir approach:

dSS
dt

= A·P·fimp(1 − fcs)− Qurban_ss. (A18)

Qurban_ss = SS· 1
SSTC

(A19)

where fcs is the fraction of combined sewer network (=1 if only combined sewer network is
implemented, 0 if fully separated) and SSTC [days] is a reservoir time constant.

CSOs are simulated using a simple reservoir equivalent to a basin with two non-linear
outflows, collecting water prior to the transfer, treatment, and discharge from the WWTP,
inspired from [31], and was used in this paper. These flows consist of an overflow CSO
activated when the water volume V reaches a maximum volume threshold Vthreshold and
varies linearly with the excess volume of water V − Vthreshold. Simultaneously, the basin is
emptied by a flow Qout,basin proportional to the volume of water V in this basin, up to a
maximum flow capacity Qmax. Only the overflow component CSO is considered here, the
other one Qout,basin having already been accounted for by the WWTP effluent time series.
The water balance for the basin is:

dV
dt

= Qin,basin + Qout,basin + CSOs (A20)
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And
Qin,basin = A·P·fimp·fcs + Qdry (A21)

Qout,basin = MIN
(

Qmax, V· 1
CSTC

)
(A22)

CSO = MAX(0, (V − Vthreshold)·
1

CSOTC
) (A23)

where Qdry [m3/day] is the daily average dry flow of the WWTP in this combined system
network, Qmax [m3/day] is the maximum flow capacity of the combined system, CSTC is
a time constant for the drainage outflow, Vthreshold

[
m3] is the maximum volume capacity

for the basin, and CSOTC is a time constant for the overflow [day].
Flow components (Equations (A19) and (A23)) and WWTP effluent time series are

routed through the reach using a 3rd-order delay function (equivalent to a 3rd-order Nash-
cascade model) and added to the pervious component (Equation (A16)). A final possible
flow transfer from the stream to the groundwater (loosing stream section) is accounted
for by use of a leaking term Loss assumed linearly driven by the water abstraction via a
coefficient GSI and possibly reducing the overall streamflow:

loss = GSI·GWAR (A24)

Appendix A.2.3. Equations for Stream Water Depth and Velocity

The water depth d and average stream water velocity U for a given reach is estimated
using Manning’s equation and the computed stream flow. We assume a rectangular cross-
section and a relatively low depth compared to the width W of the channel (d � b),
resulting in the following depth and flow velocity U estimates:

d =

(
n·Qout

s1/2·b

)3/5
(A25)

U =
1
n
·s1/2· d2/3 (A26)

where n is the Manning’s coefficient, Qout the stream flow [m3/s], s the average channel
slope [-], and b the average channel width [m]. The Manning’s coefficient n represents the
resistance or roughness of the channel to the flow and is a critical parameter for the depth
estimation with a significant impact also on water quality (especially dissolved oxygen).
We use a dynamic flow-dependent Manning’s coefficient in the model formulation, follow-
ing observations in lowland streams with high macrophyte densities, where Manning’s
coefficient decreases at higher discharges when submerged plants are flexible and bend
with the flow [53]:

n = αnQ−βn (A27)

where αn, βn are regression parameters.

Appendix A.3. Water Quality Model

Appendix A.3.1. Stream Temperature

The stream temperature Tw is predominantly influenced by the temperature of the
different flow components discharging to the reach and by the heat exchange at the interface
stream/air [110]. We use a lump heat balance over the water volume V in a reach according
to the following equation [54]:

ρCp
∂(V·Tw)

∂t
= AH + ρCp(∑ TiQi − TwQout) (A28)
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here ρ is the water density, Cp is the water-specific heat capacity [MJ·kg−1·◦C−1], A is the
area of river/atmosphere interface [m2], H is the net atmospheric flux [MJ·m2·day−1], Ti, Qi
are the water temperature and inflows to the reach, respectively, and Qout is the outflow
of the reach. At a daily time step, the thermal exchange with the streambed is considered
as having a minor influence, and the net atmospheric flux H can be estimated using the
concept of equilibrium temperature Te. Notably, H is proportional to the temperature
difference between equilibrium and water temperature [55]:

H = K(Te − Tw) (A29)

where K is a coefficient of heat transfer [MJ·m−2·◦C−1·day−1]. We assume a linear cor-
relation between equilibrium temperature and air temperature, deemed appropriate for
temperate regions, leading to the piecewise function for the equilibrium temperature
estimation [55]:

Te = 1 If Ta < 6 (A30)

Te = 0.83· Ta − 5 6 < Ta < 30 (A31)

Te = 25 if Ta > 30 (A32)

where Ta[◦C] is the air temperature.

Appendix A.3.2. Dissolved Oxygen

Dissolved oxygen in the stream is affected by carbonaceous biochemical oxygen
demand (BOD), nitrification, background sediment oxygen demand processes, and daily
oscillations stemming from photosynthesis/autotrophic respiration activities while being
simultaneously replenished by reaeration driven by the DO deficit to saturation level:

∂(V·DO)
∂t = ∑

i
QiDOi − QoutDO + rea + carboneous Biological Oxygen Demand

−nitrification − Sediment Demand + photosynthesis
(A33)

The reaeration rea process is driven by the hydrological conditions, and the oxygen
deficit with respect to oxygen saturation in the stream:

rea = ka·(DO − DOsat) (A34)

where ka

[
day−1

]
is the reaeration rate constant and DOsat [mg/L] the oxygen satura-

tion concentration.
The reaeration rate constant ka is essentially driven by the hydrological conditions

(output from the hydrological model) and the stream water temperature. We use the Owens-
Gibbs formulation in our model, suitable for relatively low flow velocities (<0.5 m·s−1) and
shallow streams (<0.75 m):

ka = 5.3
U0.67

d1.85 θa
Tw−20 (A35)

where U is the stream flow velocity [m/s], d water depth, and θ a temperature correction
factor θa ∼= 1.024 [60].

The oxygen saturation concentration DOsat is dependent on the stream water temper-
ature, altitude Alt, and salinity Sal, as described in [73]:

DOsat = Alteff· exp (−139.3 +
1.57 × 105

Tw
+

6.64 × 107

Tw2 +
1 × 24108

Tw3 +
1 × 57.105

Tw4 − Saleff) (A36)

And

Alteff =
100 − (0.0035 × 3.28 × Alt)

100
(A37)

Saleff = Sal × (0.01767 − 10.75
Tw

+
2.14 × 103

Tw2 ) (A38)
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Appendix A.3.3. Carbonaceous Biochemical (Biological) Oxygen Demand

The carbonaceous biochemical oxygen demand (BOD) induces an oxygen depletion
caused by the aerobic degradation of organic matter. BOD is described in our model
by a Streeter-Phelps-Shishkin equation system, according to [57]. This latter component
introduces feedback between the degradation rate and the concentration of dissolved
oxygen (DO), i.e., the rate of degradation is limited by how much dissolved oxygen is
available, preventing the occurrence of negative DO values (a common problem when
using the Streeter-Phelps formulation, alone):

carboneous Biological Oxygen Demand = − ks
d·BOD (A39)

ks
d= k20

d
DO

DOsat
·θBOD

Tw−20 (A40)

where k20
d

[
day−1

]
is the BOD decomposition rate at 20 ◦C, BOD [mg/L] is the carbona-

ceous biochemical oxygen demand, and a temperature correction factor θBOD ∼= 1.047 [62].
Currently, BOD is represented as a single stock based on the general Equation (3), with

a decrease in BOD from the aerobic degradation of organic matter, as well as a possible
settling for large organic particles:

∂(V·BOD)

∂t
= ∑

i
QiBODi − QoutBOD − (ks

d + ks)BOD (A41)

where i refers to the different flow component entering the reach (Equations (A16), (A19)
and (A23) + WWTP effluent), ks

d is the BOD degradation rate as previously defined, and

ks is the settling rate
[
day−1

]
dependent on a particle settling velocity Vs,BOD

[
m·day−1

]
and water depth d [60]:

ks =
Vs,BOD

d
(A42)

Appendix A.3.4. Nitrification

The nitrification process corresponds to the double step oxidation of ammonium
resulting in the combined formation of nitrate and oxygen consumption:

NBOD = −knit·NH4·ron (A43)

where k20
nit is the nitrification rate

[
day−1

]
, NH4 is the ammonium concentration [mgN/L]

and ron is the stoichiometric ratio of mass oxygen consumed per mass nitrogen (=4.57 g·gN−1).
The nitrification rate knit is highly dependent on environmental conditions co-limited

primarily by temperature, pH and the oxygen concentration [60]:

knit = k20
nit·θTw−20

nit ·pHnit_corr·fDO_nit_corr (A44)

And
fDO_nit_corr= 1 − e−0.6DO (A45)

where k20
nit is the nitrification rate at 20 ◦C, pHnit_corr is a correction factor dependent

on the pH (Figure A1, following [22]), fDO_nit_corr accounts for the influence of the DO
concentration, and θ is a temperature correction factor θnit ∼= 1.085.
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Appendix A.3.5. Macronutrients

The nutrient concentrations currently simulated in the model include inorganic nitrogen
(in terms of nitrate and ammonium) and dissolved reactive phosphorous (orthophosphate).

Ammonium

The mass balance for ammonium in the stream water is:

∂(V·NH4)
∂t

= ∑
i

Qi·NH4i − Qout·NH4 − knit·NH4 − assimilation (A46)

Overall, nutrient assimilation by the aquatic plant biomass is estimated by computing
a net carbon assimilation from the estimated daily net photosynthesis rate [111] and from
the mass stoichiometric ratios C:N and C:P using the Redfield ratio. Nitrogen will be
assimilated from both the ammonium and nitrate present in the stream water. We assume a
preference ratio FNH4,pref for ammonium compared to nitrate for the assimilation, estimated
by the following formula [60]:

FNH4,pref =
NH4

kNH4,pref + NH4
(A47)

where kNH4,pref is a half-saturation constant for the ammonium preference [mgN/L].
Furthermore, NH4 can also be found in the un-ionized form of ammonia NH3 in

stream water, which cannot be assimilated directly by plant biomass and is therefore
considered not available for assimilation. Ammonia concentration NH3 is estimated by the
acid-based equation system:

R =
1

1 + 10pKa−pH (A48)

And
NH3 =

R
1 − R

· NH4 (A49)

where pKa is the acid-dissociation constant for ammonia (and is temperature-dependent).

Nitrate

The mass balance for nitrate in stream water is:

∂(V·NO3)
∂t

= ∑
i

Qi·NO3i −Qout·NO3+ knit·NH4− assimilation− denitrification (A50)
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where denitrification is modeled as a first-order removal dependent on temperature and
DO concentration [62]:

denitrification = k20
denit·θdenit

Tw−20 ks,denit

ks,denit_lim + DO
· [NO3] (A51)

where k20
denit is the denitrification rate defined at 20 ◦C [day−1], θdenit is a temperature

correction factor θdenit
∼= 1.047, and ks,denit_lim [mg/L] is the half-saturation constant.

Ortho-Phosphate

The mass balance for soluble reactive phosphorus in stream water is:

∂(V·PO4)
∂t

= ∑
i

Qi·PO4i − Qout·PO4 − assimilation (A52)

The assimilation process for orthophosphate is similar to nitrogen, described in Ap-
pendix A.3.5.

Appendix A.3.6. Sediment Oxygen Demand

In this model version, SOD is built around two main contributions. First, a back-
ground contribution SODBG with temperature and DO concentration as co-factors. And
second, an extra dynamic term accounts for the possible enhanced heterotrophic respira-
tion SODenhanced,mac associated with the indirect effects of aquatic plant biomass occurring
during the spring and summer seasons and trapping fine sediments [56]:

SOD = SODBG + SODenhanced,mac (A53)

SODBG =
SOD20

o
d

× DO
DO + ks,o_lim

θSOD
Tw−20 (A54)

where SOD20
o [mg/L] is a constant average value for sediment oxygen demand at 20 ◦C, d

[m] is the stream depth, DO [mg/L] is the dissolved oxygen concentration, ks,olim [mg/L] is
the half-saturation value for the oxygen dependency, and θSOD is a temperature correction
factor θSOD ∼= 1.065 [62]. The SODenhanced,mac term is detailed further in the following
section (Equation (A72)).

Appendix A.3.7. Aquatic Macrophytes, Algal Biomass and Autotrophic Metabolism

Aquatic Macrophytes and Algal Biomass

The stream plant biomass is split into two main stocks (reservoirs) in this version of the
model. One represents the aquatic plants attached or fixed in the stream (e.g., macrophytes
and periphyton), and the second represents algae suspended in the water column and
thus transported (e.g., phytoplankton). These stocks aggregate the plant biomass without
specific species distinction. The biomass for both groups is expressed in terms of chlorophyll-
a as a proxy and follows a similar mass balance, except for the transport and potential
settling of suspended algae. Any loss by predation, grazing, sloughing, or scouring (for
benthic algae and macrophytes) is currently neglected for both stocks.

For aquatic plants attached to the streambed (macrophytes), it is assumed that no
transport of plant matter occurs and that the decay and decomposition of organic matter
will be accounted for in the SOD pool; then the mass balance for plant biomass can be
calculated by:

∂(V·chlamac)

∂t
=
(

kgrowth,mac − kresp,mac

)
·chlamac (A55)

where chlamac is the fixed biomass chlorophyll-a concentration [mg/L] kgrowth,mac is the
associated growth rate, and kresp,mac is the a mortality/respiration/excretion rate.

The mass balance for phytoplankton in a given reach is:
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∂(V·chlasus)

∂t
= ∑

i
Qi·chlasus,i − Qout·chlasus,i +

(
kgrowth,sus − kresp,sus − kset,sus

)
·chlasus,i (A56)

where chlasus is the suspended chlorophyll-a concentration [mg/L], Qi, Qout are the inflow
and outflow from the reach, respectively, chlasus,i is the suspended chlorophyll-a concen-
tration flowing into the reach, kgrowth,sus [day−1] is the growth rate, kresp,sus [day−1] is a
combined mortality/respiration/excretion rate, and kset,sus [day−1] is a settling rate.

The settling term kset is strongly dependent on the shape, size, and hydrological
conditions, but will be simply defined in this model by:

kset,sus =
Vset,sus

d
(A57)

where Vset,sus [m·day−1] is a constant settling velocity and d [m] is the water depth.
As previously mentioned, the term kresp,sus/benthic (biomass stock-dependent) accounts

for all losses affecting plant growth, i.e., plant maintenance respiration, excretion, and
decay. This process is temperature-dependent and defined by:

kresp = k20
r · fθ (A58)

where k20
r is a respiration/excretion rate at the reference temperature of 20 degrees, and fθ

is a temperature dependency function (see below).
The growth rate kgrowth, sus/mac (biomass stock-dependent) is based on an optimal

growth rate of the plant biomass, and limited by some environmental conditions in terms
of light, nutrients and temperature:

kgrowth = Gmax·fθ·fn,p·fl (A59)

where Gmax is an optimal growth rate (stock dependent), fl [-] is a function to account for
the light dependency, fn,p to account for the nutrient concentration dependency, and fθ [-]
is a temperature correction function.

The temperature dependency function, fθ, is defined as a skewed normal distribu-
tion to account for the optimal growth of plant biomass at a specific temperature, and
suboptimal conditions at higher or lower temperatures [62]:

fθ = e
(−2.3·(

Tw−Topt
Tx−Topt

)
2
)

With Tx = Tmin if Tw < Topt and Tx = Tmax if Tw > Topt

(A60)

where Topt is the optimum temperature corresponding to the optimal growth rate, and
Tmin, Tmax are the minimum and maximum extreme temperatures at which growth ceases.

The nutrient concentration dependency fn,p follows a Michaelis–Menten formulation.
It is assumed that only inorganic nitrogen (in the form of ammonium or nitrate) and
orthophosphate are limiting factors:

fn,p = min
(

PO4
ks,P_lim + PO4

,
N

ks,N_lim + N

)
(A61)

where ks,P_lim and ks,N_lim are half-saturation constants [mgP·L−1 or mgN·L−1].
The light correction fl accounts for the photoinhibition of growth at high light levels,

as well as the light attenuation over depth due to particles and resulting turbidity. This
correction factor is integrated over time and depth to get a mean daily correction for a
well-mixed stream reach [60]:

fl =
2.718 × Lphoto

γl·d
(
e−α1 − e−α0

)
(A62)
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where Lphoto [-] is the photoperiod, d [m] is the stream water depth, γ [m−1] is the light
attenuation coefficient, and α0 and α1 are functions of the light radiation and defined by:

α0 =
IA

Iopt
(A63)

α1 =
IA

Iopt
e−γl·d (A64)

where Iopt [ly·day−1] is the optimal light radiation for plant growth (dependent on plant
species but assumed here simply dependent on the autotroph group) and IA is the average
light radiation over daylight hours.

The light attenuation coefficient γl is function of the turbidity of the stream water,
caused by all non-biomass matter that may be present in the water γl,background (referred
here as background), as well as any suspended algae, and/or self-shadowing effects from
any fixed macrophytes. This coefficient is defined in our model by the combining the
formulation by [60,63]:

γl= γl,background+γl,bio_sus × Chlasus + 100.57 log10 (Chlamac−0.95) (A65)

where γl,background [m−1] is the light attenuation coefficient due to non-biomass materials,
and γl,bio_sus [m−1·L·mgchla−1] is the attenuation coefficient factor for the suspended algae,
Chlamac is the concentration of water plant (macrophyte).

IA, in the absence of data, is estimated from the mean extraterrestrial radiation and
successive attenuation terms:

IA = Re·(1 −∅atm)·∅cloud·∅PAR·(1 −∅shadow)· (1 −∅reflection) (A66)

where Re is the mean extraterrestrial radiation over the daylight hours [converted in
ly·day−1], ∅atm is a mean atmospheric absorption under cloud-free conditions [-], ∅cloud
represents the cloud absorption, ∅par is the ratio between global horizontal radiation and
photosynthetically active radiation, [-] is a reduction factor to account for any shadow
effects at ground level and reach dependent, e.g., riparian vegetation, and ∅reflection is a
reduction factor to account for the light reflection at the stream surface.

∅cloud is assessed using mean cloudiness data on a daily basis [112]:

∅cloud = (1 − 0.75(N/8)3.4) (A67)

where N is the cloudiness data [okta].

Photosynthesis and Autotrophic Respiration

The daily mean gross photosynthesis rate P [in mg·L−1·day−1] is estimated by the
following formula [60]:

P = roa· ∑
sus+ mac

Gmax,sus/mac·fl·fθ·chlasus/mac (A68)

where roa[mg·µgChla−1] is the oxygen yield per unit biomass and correction terms defined
in Equations (A60) and (A62).

The associated autotrophic respiration rate AR [mg·L−1·day−1] is estimated as a
fraction of the daily mean gross photosynthesis rate [64]:

AR = ARratio × P (A69)

where ARratio = 0.44.
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We emulate the diel variation of dissolved oxygen resulting from photosynthesis
P(t) from the daily mean gross photosynthesis rate using the photoperiod length and the
idealized half sinus profile for available light during the day [58]:

P(t) = PMAX(cos(−2πt) + 2Lphoto − 1) (A70)

and
PMAX = P· π

2Lphoto
(A71)

Many streams are heterotrophic ecosystems, i.e., the gross primary production, GPP,
from the autotrophic biomass is less than the overall ecosystem respiration, ER, (sum of
autotrophic respiration and heterotrophic respiration, HR, from organic matter decom-
position). Notably, such conditions have been documented in streams with important
macrophyte coverage, enhancing the settling of fine particles fueling heterotrophic respi-
ration and resulting in oxygen consumption (see, for instance, [56,83]). We defined the
SODenhanced,mac corresponding to this enhanced heterotrophic respiration to account for
this effect, with temperature and oxygen limitations, as follows:

SODenhanced,mac =
(
P/EMratio − AR

) DO
DO + ks,o_lim

θSOD
Tw−20 (A72)

where EMratio [-] is the ecosystem metabolism ratio, P is the daily mean gross photosynthe-
sis rate (Equation (A68)), and AR is the autotrophic respiration term (Equation (A69)); the
other terms representing the temperature and oxygen limitation functions have already
been defined (Equation (A54)).
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