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Summary

A gridded dataset (SMHI Gridded Climatology - SMHIGridClim) has been produced for
the years 1961 - 2018 over an area covering the Nordic countries on a grid with 2.5 km
horizontal resolution. The variables considered are the two meter temperature and two
meter relative humidity on 1, 3 or 6 hour resolution, varying over the time period
covered, the daily minimum and maximum temperatures, the daily precipitation and the
daily snow depth. The gridding was done using optimal interpolation with the gridpp
open source software from the Norwegian Meteorological Institute.

Observations for the analysis are provided by the Swedish, Finish and Norwegian
meteorological institutes, and the ECMWF. The ECA&D observation data set (e.g. used
for the gridded E-OBS dataset) was considered for inclusion but was left out because of
complications with time stamps and accumulation periods varying between countries and
periods. Quality check of the observations was performed using the open source software
TITAN, also developed at the Norwegian Meteorological Institute.

The first guess to the optimal interpolation was given by statistically downscaled
forecasts from the UERRA-HARMONIE reanalysis at 11 km horizontal resolution. The
downscaling was done to fit the output from the operational MEPS NWP system at 2.5
km with a daily and yearly variation in the downscaling parameters.

The quality of the SMHIGridClim dataset, in terms of annual mean RMSE, was shown to
be similar to that of gridded datasets covering the other Nordic countries; “seNorge”
from Norway and the dataset “FMI_ClimGrid” from Finland.

Sammanfattning

Ett klimatologiskt griddat datasett (SMHI Gridded Climatology - SMHIGridClim) har
tagits fram for aren 1961 — 2018. Data ticker de nordiska linderna med en horisontell
upplosning av 2,5 km. Variablerna som tagits fram ar lufttemperatur och relativ
luftfuktighet vid 2m hojd med en upplsning av1,3 eller 6 timmar beroende av tidsperiod,
samt dygnsupplost min- och maxtemperatur, nederbord och snddjup. Datasetet ar
framtaget med optimal interpolation av stationsdata genom analysverktyget gridpp, som
ar en Oppet tillgdnglig programvara fran Norska Meteorologiska Institutet.

Observationer till analysen har erhallits fran de svenska, norska och finska
meteorologiska instituten, samt ECMWF. En ansats gjordes ocksé att anvinda
observationer fran datasetet ECA&D fran KNMI, men pa grund av svarigheter med att
tidsstdmplarna for data fran olika lander inte Overensstdmde, uteslots datasetet ur
analysen. Kvalitetskontroll av observationerna gjordes med programvaran TITAN, som
dven den finns tillgdnglig fran och utvecklats av Norska Meteorologiska Institutet.

Som en forsta gissning till interpolationen anvéndes statistiskt nerskalade prognosfalt
(fran 11 km till 2,5 km upplosning) frin UERRA-HARMONIE. Nerskalningen gjordes
mot falt fran den operationella numeriska viderprognosmodellen MEPS. Anpassningen
gjordes med nedskalningsparametrar som varierar dver aret och dygnet.

Kvalitén hos ”SMHIGridClim med avseende pé genomsnittligt RMSE ér liknande den
som tagits fram for griddade data f6r andra nordiska lénderna med varierande
analysmetoder; “seNorge” fran Norge och “FMI_ClimGrid” fran Finland.
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1 Introduction

The SMHI Gridded Climatology was developed to meet the need for a climate reference
dataset covering Nordic countries with high resolution, reaching back to 1961. In first
place it was designed to be used for the climate scenario service at SMHI, with regards to
a reference for historical data and for bias adjustment of model climate scenarios.

A review of available datasets showed that the best candidate as climate reference for
Nordic conditions today is the Nordic Gridded Climate Dataset (NGCD) from Met
Norway (Lussana et al., 2019). However NGCD does not provide data for the entire
period back to 1961, neither does it provide sub daily information about the variables.
Another candidate was data from the UERRA surface reanalysis with MESCAN-
SURFEX. It provides analyses of daily accumulated precipitation and six-hourly analyses
of air temperature and relative humidity. However, analyses are only available at hour 00,
06, 12 and 18. It lacks analysis of Tn, Tx, and Sn and have been shown to have some
quality issues with RR.

The methodology used here is based on combining a first guess from reanalysis fields
with observations, using the gridpp system which is an open source software from the
Norwegian Meteorological Institute. Setting up a surface reanalysis system with gridpp at
SMHI also provided a start for a production chain of climate data, where additional
parameters can be considered. In addition there are synergies with a system
simultaneously being implemented for production of near-realt time climate data. This
system is also using gridpp and is the candidate for replacing the current operational
system MESAN.

Observations are provided by the Swedish, Finish and Norwegian meteorological
institutes, and the European Centre for Medium-Range Weather Forecasts (ECMWF).
Quality check of the observations was performed using the TITAN package developed at
the Norwegian Meteorological Institute. For reanalysis data, fields from UERRA-
HARMONIE with a horizontal resolution of 11 km were downscaled, using forecasts
from the Nordic operational NWP system MEPS for an overlapping period, resulting in
data fields with a horizontal resolution of 2.5 km for the analysis. An illustration of the
processing steps is shown in fig.1.1 below, and are described more in detail in respective
section of this documentation.

Variables produced with the system are near-surface air temperature (T2m), near-surface
maximum and minimum temperatures (Tx and Tn), precipitation (RR), near-surface
relative humidity (Rh2m) and snow depth (Sn).

Data spans the years 1961-2018 as reanalysis fields from UERRA are available for this
period of time. The time resolution of temperature and relative humidity data varies over
the years, from every 6th hour for the period 1961-1967, every 3rd hour for the period
1968-1996, and every hour for the period 1997-2018, depending on the amount of
observational data available. For the remaining parameters, the resolution is daily.

Data are provided for an area covering Sweden, Norway, Finland and the vicinity of the
Baltic sea. The quality of the analysis varies over time, as it depends on the quality of the
forecasts as well as the quality and density of the observations that are available for the
analysis. Besides the actual analysis for a given data, the system also outputs a map with
an estimate of the error in the analysis and a list of the observations used together with the
values of the first guess, the analysis and the cross validation at each observation point.



w— SMHI Gridded Climatology:
l Variables: At
SIEB,FP —* | 2m temperature (T2m) 1.3or6h
t 2m relative humidity (Rh2m) 13o0r6h
TITAN Maximum temperature (Tx) 24h, 1818 UTC
quality check 0
S— Minimum temperature (Tn) 24h, 18-18 UTC
I Precipitation {RR) 24h, 06-06 UTC
Snow depth (Sn) 24h, 06 UTC

Figure 1.1 Simple overview of the processing steps of data for analysis with gridpp, and the produced
variables in SMHIGridClim.

2 Data

For the analysis, observations as well as gridded fields of numerical weather prediction
(NWP) data were used for the targeted variables: T2m, Tx, Tn, RR, Rh2m and Sn.
However, for the two latter variables, the analysis was not entirely based on data of these
entities.

For near-surface humidity conditions the analysis with gridpp was done on near-surface
dewpoint temperature (Td2m) instead of relative humidity. The reason for this is that it is
more difficult to analyze a variable with hard lower and upper limits as is the case for
relative humidity at 0% and 100%. Also snow depth was not available as a parameter
from NWP analysis. Instead snow depth had to be derived from the snow water
equivalent and snow density.

2.1 Numerical weather prediction data

Forecasts from the UERRA-HARMONIE reanalysis (UERRA, 2020) were used as a
starting point for the creation of the first guess fields entering the analysis. It is worth
pointing out that the analysis fields from UERRA-HARMONIE (available at 00, 06, 12
and 18 UTC) are not used for the first guess. The reason for this is that these fields
already include information from some of the observations that will be used in the present
analysis.

The UERRA-HARMONIE fields were complemented with matching forecasts from the
Nordic operational NWP system MEPS (Frogner et al., 2019) for the overlapping time
period 201601-201907. This combination allowed for a downscaling of the original
UERRA-HARMONIE forecasts, at a horizontal resolution of 11 km, to the
SMHIGridClim grid, defined as a subset with 823 x 567 (rows x cols) points from the
MEPS grid at a horizontal resolution of 2.5 km. The three regions defining the model area
of UERRA-HARMONIE, MEPS and SMHIGridClim are shown in Figure 2.1.

UERRA-HARMONIE data was partly available on disk at the National Supercomputer
Centre (NSC) at Link6ping university at the start of the project, and was then
supplemented with additional data from the Meteorological Archival and Retrieval
System (MARS) at ECMWF. Table 2.1 lists the forecast cycles and lengths of the
UERRA-HARMONIE forecast fields used for the different entities in the SMHIGridClim
dataset.



Model areas. Red: UERRA, Blue: MEPS, Green: sweGridClim
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Figure 2.1 The areas covered by the different model grids. Red: UERRA-HARMONIE at 11 km. Blue: MEPS
at 2.5 km. Green: SMHIGridClim at 2.5 km (subset of the MEPS grid).

MEPS data was retrieved from the MARS archive at NSC. In this case only 6 hourly
forecast data was retrieved for T2m and Td2m, i.e. for 00+06, 06+06, 12+06, and 18+06.
No MEPS fields for Tn and Tx were retrieved, instead T2m relations for the midpoint of
each Tn/Tx time window were used, see Table 2.1. Snow depth is only measured at 06
UTC so 00+06 forecasts were used. However, Sn was not available as a parameter from
UERRA-HARMONIE and MEPS. Instead it had to be derived from the snow water
equivalent and snow density. Unfortunately the snow density was not available from the
MEPS model so only the snow water equivalent was downscaled. Daily precipitation was
derived from a combination of accumulation periods as described in Table 2.1.

Daily minimum and maximum temperatures were derived as point-wise min and max
values over the 12 forecast fields in Table 2.1. Note that the last three fields from the 12
UTC cycle relate to the 12 UTC cycle from the previous day. The daily precipitation (06-
06 UTC) was calculated as rr24@00+18 - rr24@00+06 + rr24@12+18 - rr24@12+06.
Note that the 00 UTC cycle refers to the previous day. The reason for this combination of
precipitation forecasts was twofold. First we wanted to avoid moist spin-up problems and
hence dismiss the forecasts during the first six hours. Second, the data assimilation at 00
and 12 UTC are supposed to contain more information than other cycles. Since shorter
forecasts are supposed to be more reliable than longer ones we did not consider to use the
simpler expression rr24@00+30 - rr24@00+06.



Variable Forecast Forecast Forecast Forecast
cycle 00 cycle 06 cycle 12 cycle 18
T2m, Rh2m 00+01 06+01 12+01 18+01
00+02 06+02 12+02 18+02
00+03 06+03 12+03 18+03
00+04 06+04 12+04 18+04
00+05 06+05 12+05 18+05
00+06 06+06 12+06 18+06
Tn/Tx 18-18 | 00+03-04 12+03-04
00+04-05 12+04-05
00+05-06 12+05-06
00+06-09 12+06-09
00+09-12 12+09-12
00+12-15 12+12-15
RR 06-06 00+06 12+06
00+18 12+18
SWE, rho 00+06

Table 2.1 Forecast cycles and lengths of the UERRA-HARMONIE fields for the different entities in the
SMHIGridClim dataset. (SWE: snow water equivalent, rho: snow density)

2.2 National data sets

Local observations were collected from the national meteorological services in Sweden,
Norway and Finland. Swedish observations are extracted from SMHI’s Meteorological
Observational Real-time and Archive (MORA) database. More information (in Swedish)
can be found here https://www.smhi.se/data/utforskaren-oppna-data/. Data is quality
controlled and more data is added constantly, both by adding real-time observations as
well as by adding historical observations through data rescue activities. SMHI has an
open data policy so the data is freely available. Data from the Norwegian Meteorological
Institute were fetched via with the Frost API (personal communication with Mariken
Homleid). Frost is MET Norway’s archive of historical weather and climate data and the
data is freely available (see https:/frost.met.no). Data from the Finnish Meteorological
Institute (FMI) were fetched from FMI’s internal data base (personal communication with
Viivi Kallio-Myers). However, data should be also freely available at

https://en.ilmatieteenlaitos.fi/open-data.

It is note worthy that the fetching of the observations from the national data archives was
incomplete in the first attempts. Comparisons with BUFR (see section 2.3) and ECA&D
data (section 2.4) revealed that data from the national archives were missing from all
institutes. Following reasons were discovered for the missing data.

1. At SMHI, the fetching scripts include source code that check if data are available for
the specified time. However, unfortunately, the test checked only if T2m was available
and did not consider other parameters. So, dates without T2m were neglected even if
other parameters as e.g. precipitation were available.
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2. AtMET No, data was prepared based on a station list including active stations only.
For instance, data from stations that are not operational any longer were missed.

3. FMI used bad keywords for latitude and longitude, which were then reported as zero.
However, observations without information on the position of the data cannot be used
in the system. Another miss was the station height. For some older stations the
corresponding information could not be created and consequently the data could not
be used for SMHIGridClim.

The lesson learnt here is that the number of observations need to be checked against other
sources as much as possible. Beside a fix for the station height for some of the Finish
stations, all discovered bugs were solved within a couple of days.

For near-surface humidity conditions Td2m was analyzed instead of Rh2m as explained
further in section 5. However, for the early years of the SMHIGridClim period the
national Norwegian data set includes only a few Td2m observations but more Rh2m
observations. Therefore, for Norwegian data all Td2m observations have been calculated
as a function of observed T2m and Rh2m. The relationship used between Rh2m, T2m and
Td2m is:

Rh2m = 100*exp( (17.625*Td2m) / (243.04+Td2m) ) / exp( (17.625*T2m) /
(243.04+T2m) ),

with unit °C for T2m and Td2m. Finally all Td2m observations from all data streams have
been checked so they do not exceed observed T2m. If any reported Td2m observation is
higher than the corresponding T2m+5 the Td2m observation has been set to missing
value. Any reported Td2m value in the range T2m to T2m+5 is set to its corresponding
T2m value.

For daily maximum and minimum temperatures the 24h reported values valid at 18 UTC
was used and for precipitation and snow depth the daily observations valid at 06 UTC are
used. The observation availability for Tn and Tx with respect to 12h reporting intervals
was examined but did not give any extra information.

2.3 BUFR observations

In addition to observations from national meteorological services, we extracted data from
the MARS archive at ECMWF. Here, observational data are stored in BUFR-format.
BUFR (Binary Universal Form for Representation of meteorological data) is a binary data
format maintained by WMO. For our purpose, we extracted all available land surface data
(LSD), see https://confluence.ecmwf.int/pages/viewpage.action?pageld=149339604.
Moreover, the data is organized in different streams. Following the recommendation of
ECMWFEF’s experts (personal communication with Cornel Soci), we fetched data from
different classes and streams in the same manner as it was done for the production of
ERAS (Hersbach et al., 2020). A bufr2ascii python script, utilizing ecCodes Version
2.18.0 python library, was used to extract the SYNOP station observations from the
ECMWF BUFR files. The script follows this example on the ECMWF confluence pages:
https://confluence.ecmwf.int/pages/viewpage.action?pageld=46600851. The BUFR
SYNOP observation keys extracted are airTemperature At2M,
dewpointTemperatureAt2M and totalSnowDepth.



2.4 ECA&D observations

The ECA&D observation data set (Klein et al., 2002) was considered for use in the
SMHIGridClim analysis, however in the end we only used it for comparison and
discussion of observation density with respect to other observation data sets. The reason
for this is partly that the ECA&D time stamps of observations vary between countries and
periods which made it too time consuming for integration in the analysis itself.

T2m observations for month 1965-07. Legend gives number of observations. T2mmin observations for month 1965-07. Legend gives number of observations

© ECMWF 0.008318 + ECA0.023068

+ Finland 0.013373 Finland 0.0080576
> Norway 0.056307 Norway 0.017111
+ Sweden 0.14435 Sweden 0.026938

0

3

Precip observations for month 1965-07. Legend gives number of observations. snow observations for month 1965-02. Legend gives number of observations.

- ECA0.062384 -+ ECA0.031033
Finland 0.011535 x © Finland 0.016464
% Norway 0.062069 W%‘f@?‘a@&«\w % Norway 0.05322
# Sweden 0.062917 P {Q.n = ,ﬁ:ﬁf\@; # Sweden 0.023771
. S S . Fad

Ex
s |

Figure 2.2 Observation density maps of T2m (upper left July 1965), Tn (upper right July 1965), RR (lower
left July 1965) and SD (lower right February 1965). The maps include observations from the different data
sources BUFR (blue o), Norway (red x), Sweden (magenta *), Finland (green +) and ECA&D (black
dots). The observations represent those that are available for the whole month taken into account that they
are considered valid within specified limits. The numbers represent number of observations normalized by
their corresponding representative areas, thus number of observations per month per km?.
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Figure 2.3 Observation density bar plots per year for (top to bottom) T2m (July), Tn (July), RR (July) and SD
(February). The bars are colour coded with respect to data sources BUFR from ECMWEF, Norway, Sweden,
Finland and ECA&D. The observations represent those that are available for the whole month taken into
account that they are considered valid within specified limits. The numbers represent number of observations
normalized by their corresponding representative areas, thus no obs per month per km’.

2.5 Observations density in space and in time

The spatial density of observations vary over time, considering both decadal time scale
and diurnal time scale, and depends also on which observed quantity is considered. Figure
2.2 shows examples of the distribution of T2m, Tn (Tx is the same), RR and SD in 1965.
In Appendix A similar plots for every 10 years are presented. The plots include positions
of all valid observations for a specific month meaning observed values within reasonable
limits and where metadata for position and altitude exists. For T2m and Sn it is clear how
important the national data sets are since the available BUFR data are very limited during
the early years of the SMHIGridClim period. For Tx, Tn and RR the national datasets are
crucial since no BUFR data are available here. Although ECA&D observations are not
used its coverage is good in Scandinavia. However, outside Scandinavia its coverage is
very variable.

The observation density on decadal time scale is shown in Figure 2.3. The increase in
T2m observations after 1995 is explained by the increase of automatic weather stations
which partly increase the density but very much so the frequency in observations which
means more stations with hourly reporting. The Tn figure reflects more the increase in
network density since these observations are always reported only once per day. The RR
observations show a decreasing trend in number from the 1980s and onwards for all data
streams. The network of snow observations, also daily, does not show any clear trend for
Sweden or Finland. However, the Norwegian network density shows a clear reduction
between 2000 and 2005.

No figures are shown for how number of observations per hour over the day for T2m and
Td2m vary on decadal time scale but an analysis of the numbers show that it is not
meaningful to analyse more than every 6th hour for the period 1961-1967 and every 3rd
hour for the period 1968-1996. From 1997 and onwards the automatic weather station
network is dense enough to allow an analysis for every hour over the day although the
density of observations still vary considerbale between the traditional reporting hours and
the intermediate ones.
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The northern part of Scandinavia shows some data sparse areas. Noticeable are an area in
northern Finland, close to the Swedish border and an area in northern Sweden close to the
Norwegian border. For such relatively data sparse areas the analysis will show larger
uncertainty.

The data density seems to be comparable between the ECA&D data set and the national
data sets for Tn, Tx and RR. However, there are station locations in the ECA&D data set
not represented in the national data sets. The reasons for this are not understood and have
not been further investigated in this project. ECA&D observations for snow depth over
Finland seem to be missing for unknown reasons.

3 Observation quality control

For the observation quality control the TITAN package
(https://github.com/metno/TITAN/wiki) developed at Met.Norway (Baserud et al., 2020)
was used. Please note that this TITAN package is now being replaced by titanlib
(https://github.com/metno/titanlib/wiki) and future applications will probably be better
based on titanlib. However, at the time of this project titanlib was still not mature enough
to be used for production.

The required input data for TITAN is station position (latitude and longitude), station
altitude and the observation to be checked. All provided observations are assumed to be
valid for a certain time, thus TITAN does not correlate observations over time. TITAN
offers a number of different quality checks and options (Béserud et al., 2020). The ones
applied in this study are described in the following section. The TITAN output includes a
Data Quality Control (DQC) code indicating if the observation is considered correct
(DQC=0) or suspicious (DQC>0).

3.1 Digital Elevation Map check

By providing a Digital Elevation Map (DEM) at a given map projection and resolution as
NetCDF file TITAN can check if the altitude specified for each observation station agrees
to the DEM within certain limits (option --dem, DQC=5). The DEM used in this case is
based on GMTED2010 (Danielson and Gesch, 2011) which is provided as SURFEX
input format (GMTED2010_075.EHdr) at 250 m resolution via the SURFEX web page
http://www.umr-cnrm.fr/surfex/spip.php?article134. This global data set has been
processed by a SURFEX setup to provide a DEM at 500 m resolution for TITAN
covering the area of SMHIGridClim. The allowed deviation (--dz.dem) between the DEM
and the provided station altitude is set to 300 m. The DEM check is applied to
observations of T2m, Td2m, Tn and Tx. In complex terrain areas, like for example the
Norwegian fjord landscape, the DEM check may not be relevant since 500 m DEM
resolution is still too coarse. For such areas the DEM DQC flag has not been considered
(see the gridpp section for more information).

3.2 Digital Elevation Map fill

The DEM can also be used to fill missing elevation data (option --dem.fill). This option is
applied to the precipitation and snow depth observations to allow for more observations
to be used from the Finland observation dataset during the period 1961-1979 when
elevation data are missing for some stations. The DEM fill option has no impact if
elevation is specified in the input data.



3.3 Missing observations or meta data

If any of the input data includes Not a Number the observation is flagged as missing data
or metadata with DQC=1.

3.4 Plausibility range

If an observation is outside specified bounds (--vmin and --vmax) the observation is
flagged as failing the plausibility test with DQC=2.

3.5 Buddy check

The buddy check (DQC=4) compares the observations against the average of all
neighbours in a square box centred on each observation. The distance (--dr.buddy, default
3000 m) from the central observation to the sides of the box is specified. A minimum
number of observations (--n.buddy, default 5) is required to be available in the box, and
the range of elevations must not exceed a specified threshold (--dz.buddy, default 30 m).
Several buddy checks in a row can be specified by the desired number of iterations (--
i.buddy, default 1). The observation is flagged as suspicious if the deviation between the
observed value and the box-average normalized by the box standard deviation exceeds a
predefined threshold (--thr.buddy, default 3). A minimum allowed value for the standard
deviation can be specified (--sdmin.buddy). The buddy check is always applied by default
in TITAN but especially adjusted settings have here been used for precipitation and snow
depth observations. In practice, the default setting of dr.buddy=3000 m means that the
buddy check will not have an influence on other variables in the SMHIGridClim
observation network.

3.6 Spatial consistency test

The spatial consistency test (SCT, DQC=5) acts as a more sophisticated buddy check by
evaluating the likelihood of an observation given the values observed by the neighbouring
stations (Lussana et al., 2010). The SCT is performed independently over several
subdomains of the region defined by a predefined grid with a number of rows and
columns (--grid.sct). The grid boxes can be smaller for a dense observation network. For
the SMHIGridClim area we have normally used 3x3 grid boxes except for the
observations every 3rd hour after 1996, when the observation network is considered a bit
more dense, where we have used 5x5 grid boxes. Depending on the sign of the cross-
validation (CV) residual in Eq 4 of Lussana et al. (2010) there are a few options for the
threshold in Eq 4 in TITAN: the threshold (--thr.sct) is used for both positive and
negative CV residuals or thresholds are specified separately for positive (--thrpos.sct) and
negative (--thrneg.sct) CV residuals. Apart from these mentioned options the default
TITAN values are used for other SCT options. The SCT test is used as the main quality
test for T2m, Td2m, Tn and Tx. For precipitation and snow depth it is also used but the
thresholds are given quite high values which means that only quite extreme deviations
will be flagged.

3.7 Duplicates

Stations can be reported in more than one observation data stream, e.g. in BUFR and in
the Swedish national data. To avoid such duplicates in the analysis we apply the no-
duplicates option in TITAN (--no_duplicates) where stations are not allowed to be located
closer than 0.01 deg apart (--dup.match_tol x 0.01) and 100 m apart in altitude (--
dup.match_tol z 100). If duplicates are identified the last station in the list is used. In
SMHIGridClim we give priority to national data streams with respect to the BUFR data
stream. The duplicates are removed before any other processing of observations are done
in TITAN. Thus, there is no DQC flag indicating duplicates.

17



3.8 First guess check

Besides the checks done with TITAN prior to the analysis, there is also a gross error
check done against the first guess in the script that does the analysis. However, there is
one exception, the observations of daily precipitation are not compared to the first guess.
The reason for this is that the true precipitation field may be very patchy and we do not
want to risk losing important information regarding local showers that were missed by the
forecast model.

The check is done by interpolating the first guess to the observation points using a bi-
linear interpolation. For temperature this interpolation also takes into account height
differences between the model grid and the observation site (-0.0065 K/m and -0.0017
K/m for 2m and dt2m respectively). The difference is then compared to the standard
deviation of all these differences. If the difference at any given point is larger than three
times the standard deviation it is considered as a gross error and the observation is
removed.

3.9 Comments

The TITAN isolated station check has been deactivated for SMHIGridClim by setting the
option --doit.isol to 2.

4 Downscaling the first guess

During the time period January 2016 - July 2019, data from both UERRA and MEPS was
available. Data from this period was used to establish a relation, based on a linear least
squares regression, between a given point in the subarea of the MEPS grid constituting
the SMHIGridClim region (at 2.5 km) and its surrounding 4 x 4 neighboring points in the
UERRA grid, at 11 km horizontal resolution.

An example with the T2m from UERRA (interpolated to the 2.5 km grid) and the
corresponding downscaled field is given in Figure 4.1. In the right panel of the same
figure it is shown how one gridpoint (dark red) in the 2.5 km grid (pink) is associated
with its surrounding 16 nearest neighbors (dark blue) from the 11 km UERRA grid (light
blue).

T2m, UERRA, 1986040106+06 T2m, downscaled, 1986040112
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Figure 4.1 Example showing the downscaling of T2m. Lefi: Original UERRA field interpolated to the
SMHIGridClim grid (unit: degrees Celsius). Middle: Downscaled field. Right: Schematic illustration of
how a point (dark red) in the 2.5 km grid is associated with its 4x4 neighbourhood (dark blue dots) in the
11 km UERRA grid.



For T2m and Td2m, these linear least squares regressions were performed for nighttime
(00 UTC) and daytime (12 UTC) as well as for the mid winter (represented by day
number 0) and mid summer (represented by day number 183). The final weighting with
respect to hour and time of the year was done combining the weights for day/night and
winter/summer by using squared cosine functions centered around 00 and 12 UTC and at
day number 0 and 183, see Figure 4.2. Thus resulting in 16 x 4 regression parameters for
each point in the new grid for each of the parameters.

Daily weight functions Seasonal weight functions
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Figure 4.2 Weighting functions for the estimation and application of the downscaling parameters. Left: Daily
weighting functions for 00 and 12 UTC parameters. Right: Weighting functions for the seasonal parameters
at day number 0 (winter) and 183 (summer).

For Tn and Tx, no separate regression was done, instead the relations obtained for T2m
were used for each of the twelve hours throughout the day (see Table 2.1). Weights for
the downscaling of RR were obtained only based on seasonal weighing with no
dependence of the hour of the day, and using a non-negative least squares solution to
guarantee that the downscaled result should always be positive.

After the regression parameters have been estimated based on the overlapping time period
for MEPS and UERRA, they are used in the downscaling of the UERRA grid for the
entire data period. The same weighting functions that were used to find the regression
parameters are again used to combine those parameters at any given date and time;

wd _00=cos( (hr-0)/2/24*2%pi) "2
wd_12=cos( (hr - 12) /2 / 24*2%*pi ) "2

wy w=cos( (dn-0)/2/36525%2%pi )2
wy s=cos((dn-365.25/2)/2/365.25%2%pi) "2

Here wd 00 and wd 12 are the weights associated with the given analysis hour (hr) while
wy_w and wy_s are the seasonal weights associated with the analysis day number (dn).
These weights are then used in a linear combination of the regression parameters
associated with 00 UTC during winter and summer (w00w, w00s) and 12 UTC for the
two seasons (w12w, wl2a).

w=wd 00 * (WOOw * wy w+ w00s * wy s)+wd 12 * (Wl2w * wy w + wl2s * wy _s)

As described above, only a seasonal weighting was applied for the daily precipitation.
For the downscaling of Tn and Tx, each of the fields associated with the 12 intervals in
Table 2.1 were downscaled separately using the midpoint for each interval in the
calculation of the weights. Constant weights were used for the downscaling of the daily
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snow water equivalent.

Downscaling of the snow depth was done in three steps. First the snow water equivalent
from UERRA was downscaled. Then it was divided by the snow density from UERRA,
interpolated to the SMHIGridClim grid, to result in an estimate of the snow cover. A third
step was then introduced to correct for large systematic differences between the
probability distributions of the downscaled and observed snow depth data. The reason
behind these differences has not been analyzed. The third step consisted of imposing an
upper limit of 10 m to the downscaled snow depth followed by a quantile mapping (QM)
of the downscaled values (Panofsky and Brier, 1968). The QM method has been shown to
produce good results when it comes to correction of systematic erros, e.g. for removing
precipitation biases (Themef]l et al., 2012).

5 Analysis with gridpp

The analyses were done using the open source software gridpp from the Norwegian
Meteorological Institute (https://github.com/metno/gridpp). We used the python library
version of gridpp that provides functions for doing an analysis using optimal
interpolation (OI) to combine observations and gridded forecasts (the first guess) in a
statistically optimal sense (Gandin, 1965). Besides optimal interpolation the library also
provides functions for other operations like bi-linear interpolation and diagnosing entities,
like was done here for relative humidity from the two meter temperature and two meter
dew point temperature.

In order to perform an OI analysis one needs to provide information about the spatial
covariances for the first guess error and the observation error. In gridpp the covariances
are separated into an error variance ratio and a correlation (structure) function where the
latter can be modeled in different ways.

We chose the more versatile function “BarnesStructure” (Barnes, 1973). Here the first
argument is the horizontal decorrelation length scale (in meters) and the second is the
vertical decorrelation length scale (in meters). A third argument specifies the
decorrelation length across land area fraction (units 1), and a fourth argument specifies
the maximum length that an observations will have an effect (in meters, also called the
localization radius). In our case we set the last argument to zero implying that all
observations will be considered.

In order to find suitable values for the parameters regarding the error variance, ratio
between first guess and observations error variances as well as the parameters for the
structure function we performed a cross validation. Such a procedure is also provided for
by gridpp, that computes the analysis in a "leave-one-out" cross-validation fashion. For
each output point, the observation at that point is left out of the OI analysis in order to
provide an estimate of the error at that location. Note, however, that this error may not be
representative for the scale at which the OI analysis is performed. Still, it provides
valuable information regarding how well the analysis matches the observations in an
independent way.

Using the cross validation functionality we set up an optimization scheme where we
minimized the squared cross validation error using a grid search method. The
minimization was done in a semi separable way. First the ratio between the observation
and first guess errors and the horizontal correlation lengths were optimized together,
assuming no vertical or land area fraction dependencies. Then the vertical correlation
length was optimized on top of this result, and finally the land fraction correlation
distance was optimized.

When the vertical and land area fraction correlation distances were optimized, only
observation points whose neighbors differed with respect to these entities were



considered. Here the 75 percentile of the standard deviation of the differences in height
and land area fraction was used as a threshold to determine which points should enter the
minimization. This was done in order to highlight the cases where differences in these
entities matter.

Since the optimal parameters of the structure function depends on the observation density
we derived a set of optimal parameters throughout the time period 1961 - 2018. Optimal
parameters were derived for the years 1965 (extended to 1961), 1975, 1985, 1995, 2005,
and 2015 (extended to 2018). Again, separate parameters were assigned to night and day
as well as winter and summer using the same weighting functions as for the downscaling,
with an extra 10 year wide weighting around the specific year:

(cos( (yr-yr_k)/2/20*2%*pi) "2)

Parameters for any given year and date throughout the time period 1961 - 2018 were then
obtained by a smooth spline interpolation.

The analyses were done using the downscaled fields, described earlier as the first guess,
with one exception. The analysis of the relative humidity was not done directly with
gridpp. Instead it was diagnosed with the gridpp function gridpp.relative_humidity using
the analyzed T2m and Td2m fields as input. The reason for this is that the errors of the
T2m and Td2m first guess fields better fits a normal distribution than that of the Rh2m
field which is bounded to the range 0 - 100 % and hence also has an error that is bounded
close to its extremes.

6 Results

In the following sections, results of the data processing steps are presented. In section 6.1
the downscaling of UERRA forecasts is evaluated in terms of the average difference
between the downscaled fields for the first guess, and the original UERRA fields. Section
6.2 presents the result of the optimization of parameters for the gridpp analysis. In 6.3
climatologies of the output data from the analysis are presented, and in 6.4 the influence
of the analysis are described in terms of the analysis increments, which are the difference
between the analysis and the first guess. Section 6.5 gives an overview of the spatial
patterns of analysis errors calculated with gridpp. Finally, in section 6.6 time series of
yearly cross validation statistics for the analysis are presented..

6.1 Downscaling

This section describes how the downscaled fields for T2m, Td2m, Tn, Tx, RR and Sn
compare to the original UERRA forecast fields on a daily and seasonal basis. In order to
make the comparison on the same grid, the UERRA fields were interpolated to the
SMHIGridClim grid using bi-linear interpolation.

The downscaling procedure results in fields that fit the patterns in the corresponding
MEPS fields during the years 2016 - 2018. The assumption is that the performance of the
MEPS forecast is superior to that of the UERRA forecast. How the downscaling affects
the analysis performance is described in the section 6.7 regarding the cross validation
results.
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6.1.1 Two meter temperature

T2m, mean DS-UERRA, January at 12 UTC T2m, mean DS-UERRA, July at 12 UTC

-4

T2m, mean DS-UERRA, January at 00 UTC T2m, mean DS-UERRA, July at 00 UTC

Figure 6.1 Mean differences between T2m from the downscaled and original UERRA fields respectively (unit:
K). Top left: January 12 UTC. Top right: July 12 UTC. Bottom left: January 00 UTC. Bottom right: July 12
UTC.

In the winter (represented by January) the downscaling results in higher temperatures,
both during night and day (figure 6.1). In the summer (July) it is the other way around,
with the downscaling mostly producing colder temperatures, especially in the mountains
during the day. Note that lakes Véanern and Vittern get slightly warmer during winter and
noticeably colder during summer.



6.1.2 Two meter dew point temperature

Td2m, mean DS-UERRA, January at 12 UTC Td2m, mean DS-UERRA, July at 12 UTC

Td2m, mean DS-UERRA, January at 00 UTC Td2m, mean DS-UERRA, July at 00 UTC

Figure 6.2 Mean differences between Td2m from the downscaled and original UERRA fields respectively
(unit: K). Top left: January 12 UTC. Top right: July 12 UTC. Bottom left: January 00 UTC. Bottom right:
July 12 UTC.

Figure 6.2 illustrates the mean differences between the downscaled Td2m fields and the
original UERRA fields for night and day (00 and 12 UTC) as well as winter (January)
and summer (July).

The pattern for the dew point temperature is similar to that of T2m. However, the
temperature increase during the winter is more pronounced. The cooling during the
summer day is more homogenous throughout the area while the effect is rather neutral for
the summer night. The downscaling effect on the dew point temperatures of lakes Vanern
and Vittern is reduced compared to that of T2m.
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6.1.3 Daily minimum and maximum temperature

Tx, mean DS-UERRA, January [K] Tx, mean DS-UERRA, July [K]
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Tn, mean DS-UERRA, January [K] Tn, mean DS-UERRA, July [K]
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Figure 6.3 Mean differences between Tn and Tx from the downscaled and original UERRA fields respectively
(unit: K). Top left: Tx, January. Top right: Tx, July. Bottom left: Tn, January. Bottom right: Tn, July.

Figure 6.3 shows the mean differences between the downscaled Tn and Tx fields and
their original UERRA counterparts during winter (January) and summer (July).

It comes as no surprise that the patterns for Tn and Tx are very similar to those of the two
meter temperature at 00 and 12 UTC.



6.1.4 Daily precipitation

RR24, mean DS-UERRA, January [mm] 4 RR24, mean DS-UERRA, July [mm]

Figure 6.4 Mean differences between downscaled RR24 and the original UERRA fields. Left: January. Right:
July.

Figure 6.4 shows the mean differences in daily precipitation between the donwscaled
fields and their original UERRA counterparts during winter (left) and summer (right).
During winter the downscaling intensifies the precipitation in the mountains. For the
summer period, the downscaling instead results in a general decrease in the daily
precipitation

6.1.5 Daily snow depth

Sn, mean DS-UERRA, [m]

0.4

- 0.2

r 0.0

Figure 6.5 Mean differences between downscaled Sn and the original UERRA fields. The color scale was
limited to +/- 0.5 m to reveal more details.

Figure 6.5 shows the mean differences in daily snow depth between the donwscaled fields
(including the quantile mapping) and the UERRA estimate based on the ratio between
snow water equivalent and snow density. The largest differences can be seen in Norway
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and in the mountain areas. There is a slight trend towards more snow in the downscaled
fields at higher latitudes.

6.2 Gridpp parameters

The gridpp parameters regarding error ratios and correlation distances were optimized
using weighting functions centered around six reference years; 1965, 1975, 1985, 1995,
2005 and 2015. Smooth spline functions were then used to interpolate the optimal
parameters to any given year during the time period 1961 - 2018.

i T2m error ratio do/op T2m horisontal correlation distance
: [ 1000 130000 x === winter 00 1000
09 o —— winter 12
120000 )2\ === summer 00
—— summer 12
0.8+
800 800
110000
0.7
100000
0.6 4 600 600
05 90000 3 i
g
0.4 400 80000 - e
5
- . ot -
0.34 === winter 00-— 70000 = 3
— wiftér 12 - g B o
02 --- smmer 00 —== nbr obs 00 _— ==~ nbr obs 00
—=~Jsummer 12 —— nbrobs 12 MpEoe 2
0.1 : - -
1960 1970 1980 1990 2000 2010 2020 1960 1970 1980 1990 2000 2010 2020
T2m vertical correlation distance T2m land area fraction correlation distance
800 ——- winter 00 10 __X X L] L]
— winter 12 ot
700 { === summer 00
—— summer 12
08
600
500
0.6
400
300
0.4
2001 === winter 00
— winter 12
100 0.2 === summer 00
—— summer 12
01— T T v v T T v v v v v v
1960 1970 1980 1990 2000 2010 2020 1960 1970 1980 1990 2000 2010 2020

Figure 6.6 Time interpolation of optimized gridpp parameters. Black lines show the mean number of
observations per analysis date on the axis to the right. Top left: Error variance ratio (unitless). Top right:
Horizontal correlation (unit: m). Bottom lefi: Vertical correlation (unit: m). Bottom right: Land area fraction
correlation (unitless).

The optimal gridpp parameters for the two meter temperature, and how they are
interpolated in time, is illustrated in Figure 6.6. Also shown (in the top panels) is the
evolution of the mean number of observations available for the T2m analysis at 00 and 12
UTC respectively. The optimal parameter values for the six reference years are shown
with crosses and dots for night (00 UTC) and day (12 UTC), while the corresponding
interpolated values are shown with dashed and sold lines respectively.

The ratio between the error variance of the observations and the error variance of the first
guess (top left panel of Figure 6.6) shows a small increase with time. This probably
corresponds to improved accuracy in the first guess (e.g. more observations used in the
UERRA analysis from which the forecasts starts). The ratio is lowest during daytime
when there is also little difference between winter and summer. It is then somewhat



higher during the summer night and highest during the winter night. The reasons for these
differences have not been investigated.

The horizontal correlation distance is optimized together with the error ratio and shows a
similar pattern (top right panel of Figure 6.6). Here the connection to the observation
density is important and it is clear that the optimal analysis at the beginning of the time
period needs larger error correlation distances than at the end. With a sparser observation
distribution the structure functions (error covariance functions) need to be wider in order
to get support from enough observations. Note that the number of observations during
night time is much lower than during day time at the beginning of the time period and that
this is reflected in wider horizontal correlation functions during the night.

The bottom left panel of Figure 6.6 shows the distance parameter for the vertical
correlation function. Here there is little variation with the distance being somewhat longer
at 12 UTC during summer.

Finally, the distance parameter with respect to differences in land area fraction is shown
in the bottom right panel of Figure 6.6. The value is a bit higher during winter indicating
that differences in land area fraction matter less during that season. This cloud be
explained by the fact that water bodies can freeze during winter and then have
temperatures more similar to their surroundings than what is the case during the summer
season.
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Figure 6.7 Time interpolation of optimized gridpp parameters. Top lefi: Error variance ratio (unitless). Top
right: Horizontal correlation (unit: m). Bottom left: Vertical correlation (unit: m). Bottom right: Land area
fraction correlation (unitless).

Optimal gridpp parameters for the two meter dew point temperature is shown in Figure
6.7. The legend is the same as for the two meter temperature described in the previous
section.
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For the dew point temperature, the error ratio decreases with time. This indicates that
either the measurements have less noise or the first guess has larger errors towards the
end of the time period. Why and if this is really the case has not been studied.

The horizontal correlation distance for the dew point shows a similar pattern to that of the
two meter temperature where the increase in observation density is the natural
explanation.

The vertical correlation distance shows a somewhat disparate pattern. However, the actual
influence of these variations on the analysis performance is rather low.

Differences in land area fraction are less important for the dew point analysis. There is a
tendency towards such differences being more relevant during summer noon compared to
other times of the year. Again these parameter differences only results in minor effects on
the analysis performance.

6.2.3 Daily precipitation

The optimization of the gridpp parameters for the daily precipitation resulted in very
similar values for all the reference years. Moreover there was no significant difference
between summer and winter.

Hence, the gridpp parameters for the daily precipitation were set to constant values for all
analysis dates. The optimal values are given in Table 6.1.

Error variance ratio | Horizontal distance | Vertical distance Land area fraction
0.30 43 km 1800 m 0.0

Table 6.1 Optimal gridpp parameters for the analysis of daily precipitation.

Note that a value of 0.0 for the land area fraction difference means that such differences
have no effect.

6.2.4 Daily snow depth

The optimization of the gridpp parameters for the daily snow depth also resulted in very
similar values for all the reference years. Since snow mainly occurs during the winter
time no distinction was made between different seasons for this parameter.

The gridpp parameters for the daily snow depth were set to constant values for all
analysis dates. The optimal values are given in Table 6.2.

Error variance ratio | Horizontal distance | Vertical distance Land area fraction
0.90 35 km 350 m 0.55

Table 6.2 Optimal gridpp parameters for the analysis of daily snow depth.



6.3 Climatologies

Climatologies for the analyzed entities during the time period 1991-2018 (close to the
climate standard normal period 1991-2020) are depicted in Figure 6.8. Note that the
ranges for the relative humidity, yearly precipitation and daily snow depth have been
clamped at the 1 and 99 percentiles in order to enhance the dynamic range. The
temperatures where clamped at +/- 11 K for the same purpose.

In Figure 6.9 the differences between the climatological values of the same entities for
the time periods 1991-2018 and the climate normal period 1961-1990 are shown.

For all the temperature related parameters a general increase is seen throughout the
analyzed area. The largest increase is seen for the daily minimum temperature. Also the
mean yearly precipitation is increasing with a maximum in the south-east part of Norway
where the yearly precipitation is already at its highest. In Sweden the precipitation shows
a noticeable increase in the west coast region. For the relative humidity the pattern is
more patchy, but indicate increased values mainly in the northern part and somewhat
decreasing values in the southern part of Sweden.

Note that there are some points standing out in the difference maps, mainly in coastal
regions, and especially for the relative humidity and the precipitation. Most of these
deviations are connected to coastal stations that are not representative on the scale of the
grid used for the analysis. However, over Sweden, which is the focus area of this analysis,
the fields looks rather smooth. The snow depth is in general decreasing over Sweden.
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Figure 6.8 Climatologies based on the gridpp analyses for the time period 1991-2018. Top left: hourly mean
T2m. Top right: Hourly mean Td2m. Middle left: Daily mean Tn. Middle right: Daily mean Tx. Bottom lefi:
Hourly mean rh2m. Bottom middle: Yearly mean RR. Bottom right: Daily mean Sh.
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Figure 6.9 Differences between climatologies for the time periods 1991-2018 and 1961-1990. Top lefi: hourly
mean T2m. Top right: Hourly mean Td2m. Middle lefi: Daily mean Tn. Middle right: Daily mean Tx. Bottom
left: Hourly mean rh2m. Bottom middle: Yearly mean RR. Bottom right: Daily mean Sn.
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6.4 Analysis increments

In this section the mean of analysis increments, which are the difference between the
analysis and the first guess, is described. Note that this means that positive values in the
maps indicate that the first guess was too low and the other way round. Ideally the
distribution of the analysis increments should follow a normal distribution with zero
mean. Here the first guess is given by the downscaled UERRA fields described earlier,
with one exception. The first guess for the analysis of the relative humidity is instead
diagnosed from the analyzed T2m and Td2m fields.

As part of the data quality control, analysis increments for every month during the data
period was inspected manually.

6.4.1 Two meter temperature
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Figure 6.10 Mean analysis increments for T2m [C]. Top left: January 12 UTC. Top right: July 12 UTC.
Bottom left: January 00 UTC. Bottom right: July 00 UTC.

The analysis increments for the two meter temperature are illustrated in Figure 6.10.
During the winter noon the analysis results in a systematic increase of the temperature



(top left panel) while it is the other way round during the summer night (bottom right
panel).

This can be compared to the differences between the downscaled and original UERRA
fields shown in Figure 6.1. The downscaling resulted in warmer fields during the winter
days but not warm enough to fit the observations. For the summer night the downscaling
was rather neutral indicating that both MEPS and UERRA have a positive bias for that
period.

Note that the temperature of Lake Vanern was decreased by the downscaling during the
summer but this effect is nullified by the analysis during the summer day.

6.4.2 Two meter dewpoint temperature

Td2m, mean an-fg, January at 12 UTC Td2m, mean an-fg, July at 12 UTC
2.0 2.0

Td2m, mean an-fg, January at 00 UTC Td2m, mean an-fg, July at 00 UTC
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Figure 6.11 Mean analysis increments for Td2m [C]. Top left: January 12 UTC. Top right: July 12 UTC.
Bottom left: January 00 UTC. Bottom right: July 00 UTC.
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Figure 6.11 shows the mean analysis increments for the two meter dew point temperature.
The results look good during winter with no consistent bias patterns. During summer the
analysis decreases the temperatures somewhat, both during day and night.

Comparing these results with those earlier presented for the down scaling of Td2m it can
be seen that the temperature increase imposed by the downscaling during winter had a
positive effect. The decrease during the winter daytime period was also in the right
direction but not strong enough. The night time values during the summer are a bit on the
high side as indicated in the lower right panel of Figure 6.11.

6.4.3 Two meter relative humidity

Rh2m, mean an-fg, January at 12 UTC Rh2m, mean an-fg, July at 12 UTC

Rh2m, mean an-fg, January at 00 UTC Rh2m, mean an-fg, July at 00 UTC
8

Figure 6.12 Mean analysis increments for Rh2m [% units]. Top left: January 12 UTC. Top right: July 12
UTC. Bottom left: January 00 UTC. Bottom right: July 00 UTC.

The analysis increments for the two meter relative humidity depicted in Figure 6.12 are
not really analysis increments. Relative humidity is not analyzed per se, but instead
diagnosed from the analyses of T2m and Td2m. Anyway it can be interesting to look at



the difference between Rh2m diagnosed from the downscaled fields of T2m and Td2m,
and the diagnosed analysis. The results from such a comparison is shown in Figure 6.12.

The pattern follows that of T2m and Td2m. Since the analyses of T2m and Td2m showed
a deficiency in the model input (first guess) during the warm summer and cold winter
seasons, this is here reflected in too humid winter days (top left panel) and too dry
summer nights (lower right panel).

6.4.4 Daily minimum and maximum temperatures

Tx, mean an-fg, January [K] Tx, mean an-fg, July [K]

Tn, mean an-fg, January [K] Tn, mean an-fg, July [K]

-4

Figure 6.13 Mean analysis increments for Tn and Tx [ 'C]. Top left: Tx, January. Top right: Tx, July.. Bottom
left: Tn January. Bottom right: Tn July.

It is well known that numerical weather prediction models have problems reproducing the
extremes of the daily temperature cycle. This is also evident in Figure 6.13 where the
mean analysis increments of the daily minimum (bottom panels) and maximum
temperatures (top panels) are shown. The analysis changes the maximum to be warmer
and the minimum to be colder than what is suggested by the first guess.

When this result is compared to how the downscaling affects the original UERRA
forecasts, something peculiar emerges. The downscaling increases the minimum
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temperature during the winter nights and decreases the maximum temperatures during the
summer day time, contrary to what the analysis suggests.

The reason for this seems to be that the MEPS model is even worse at reproducing the
daily cycle of the minimum and maximum temperatures than UERRA and that the
downscaling then replicates this bad behavior.

6.4.5 Daily precipitation

RR24, mean an-fg, January [mm] 5 RR24, mean an-fg, July [mm]

Figure 6.14 Mean analysis increments for the daily precipitation. Left: January. Right: July.

The analysis increments for the daily precipitation indicate that the first guess has too
much precipitation in general and that the effect is largest in the Norwegian mountain
regions, see Figure 6.14.

During summer, the first guess has too little precipitation along the south-west Norwegian
coast and there is also a slight tendency that the first guess underestimates the
precipitation along the Swedish west coast during the summer season (right panel).

Looking back at the results from the downscaling it is evident that the decrease of the
precipitation in UERRA during summer was beneficial. The way the downscaling
increases precipitation in parts of the Norwegian mountain chain is more questionable.
However, this has not been reviewed in detail.

6.4.6 Daily snow depth

The analysis increments for the daily snow depth indicate that the first guess has too little
snow in parts of the Norwegian mountain regions and in Finland, see Figure 6.15. The
neutral result in the eastern part of Finland is due to a lack of observations in that region.

Comparing the analysis increments with the effect of the downscaling (Figure 6.5) it
seems as if the downscaling was working in the right direction. However, there is one
area north west of Ostersund where the downscaling decreased the snow depth and the
analysis then revered it by adding more snow.
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Figure 6.15 Mean analysis increments for the daily snow depth.

6.5 Analysis errors

The gridpp software can output an estimate of the analysis error, i.e. a map with the point-
wise error variance in the output from the gridpp OI analysis. Here the error refers to the
difference between the analysis and an imagined true value at any given point. The
quality of this estimate depends heavily on the information the user provides regarding
the observation and first guess error variances.

For the analysis, the user only has to specify the ratio between the observation and first
guess error variances. However, in order to get an estimate of the analysis error these
errors need to be specified separately.

The first guess error variance was estimated as the variance of the error between the first
guess and the observations at any specific analysis date. This means that it is set to a
constant field but that this constant varies over time, depending on how well the first
guess fits the observations.

The observation error was then calculated by multiplying the estimated first guess error
variance with the gridpp error ratio parameter obtained from the optimization. Hence,
also the observation error variance field will be constant in space but vary over time.

The spatial variation in the analysis error comes from the way the structure function,
depending on horizontal, vertical and land area fraction distances, interacts with the
current observational network.

In the light of the above assumptions the absolute values of the analysis errors should
only be viewed as crude estimates. However, the spatial patterns carries important
information about how the analysis error varies with respect to the underlying observation
network.

Analysis errors for every month during the data period was inspected manually as part of
the data quality control.
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Figure 6.16 Mean analysis errors. Top left: T2m (unit: K). Top right: Tn (unit: K). Bottom left: RR (unit:
mm). Bottom right: Sn (unit: m).

Figure 6.16 illustrates the mean analysis errors (at 00, 06, 12 and 18 UTC) for T2m, Tn,
RR and Sn over the entire time period 1961 - 2018. The error for Td2m is very similar to
that of T2m and that of Tn and Tx, albeit with somewhat lower values.

Note the difference in the error between areas where there are observations and areas
where only the first guess is present. For the analysis of T2m and Td2m also observations
from the ECMWF MARS archive entered the process. This results in an analysis error
that is rather homogenous within the SMHIGridClim area (upper left panel of Figure
6.16). Some differences can be noted. The variable orography in Norway seems to pose a
challenge for the NWP forecasts causing the error to be larger there than in the flatter
areas of Sweden and Finland. The area east and south of Finland show a larger error that
is probably due to fewer observations in these regions.

For Tn/Tx, RR and Sn only observations from Norway, Sweden and Finland entered the
analysis. This is reflected in the analysis error being much larger outside this area. The
relative difference between the error in areas with and without observations is most
pronounced for the daily precipitation (bottom left panel of Figure 6.16). The legend was



clamped for both Tn, RR and Sn in order to make details visible in the region where
observations contribute to the analysis.

6.6 Cross validation

In order to obtain a better estimate of the analysis error the cross validation results was
examined. As mentioned earlier, the gridpp software can perform an efficient “leave-one-
out” cross validation and this was used in order to find what parameters to use in the
optimal interpolation with gridpp.

However, in the production of the SMHIGridClim analysis a cross validation was also
done at each analysis date. Hence there are cross validation estimates of the analysis error
available at each observation point for any given analysis (except for Rh2m that was
diagnosed).

In the following sections the performance of the original UERRA data, the corresponding
downscaled data and the resulting analysis are compared with respect to bias, standard
deviation and root mean squared error.

6.6.1 Two meter temperature

“Yearly mean error statistics for t2m; fg(u|d)-ob and an(cv)-ob at 12 UTC ‘Yearly mean rms for t2m; fg(u]d)-ob and an(cv)-ob at 12 UTC
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Figure 6.17 Error statistics for T2m at 12 UTC. Left: bias (dashed lines) and standard deviations (solid
lines). Right: RMSE and number of observations. Red: UERRA, blue: downscaled, green: analysis.

The added value of the downscaling and analysis compared to the original UERRA data
is exemplified for the two meter temperature at 12 UTC in Figure 6.17. Plots for other
hours can be found in Appendix B.

The left panel shows time series of bias and standard deviation for the differences
between model fields and the observations. Hence, the negative bias of the UERRA
forecast (dashed red line) valid at 12 UTC means that it is generally too cold. Here, the
downscaling improves on both the bias (dashed blue line) and the standard deviation
(solid blue line). As a result the total error in terms of the RMSE is also improved by the
downscaling (solid blue line in right panel).

The statistics for other hours follow a similar pattern. However, at 00 UTC the
downscaling increases an already positive bias even more. This is consistent with the
systematic positive downscaling increments seen during the winter that was shown in
Figure 6.1.

Ideally the bias of the first guess entering the optimal interpolation analysis should have
zero bias. This is not the really the case here and the bias seems to grow towards the end
of the time period. There is however a slight improvement in the standard deviation of the
UERRA data over time (solid red line in the left panel). On the other hand, the added
number of observations towards the end of the period (gray line in right panel) does not
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lead to any significant improvement on the analysis error. The reasons behind these
effects have not been investigated.

The bias of the analysis is close to zero (dashed green line in left panel) and the RMSE
(solid green line in right panel) is improved significantly as compared to the first guess
(the downscaled UERRA field, solid bule line in right panel).
6.6.2 Two meter dewpoint temperature
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Figure 6.18 Error statistics for Td2m at 12 UTC. Left: bias (dashed lines) and standard deviations (solid
lines). Right: RMSE and number of observations. Red: UERRA, blue: downscaled, green: analysis.

Figure 6.18 illustrates the time evolution of the bias, standard deviation, RMSE and
number of observations for the two meter dew point temperature at 12 UTC (for plots
valid at other hours, see Appendix B).

The downscaling (blue lines) improves the standard deviation but does not change the
systematic overestimation of Td2m in the UERRA forecasts valid at 12 UTC. During the
night (not shown here) the downscaling helps improving a negative bias at the end of the
time period (although it overcompensates somewhat in the early years).

The number of observations increases over time (gray line in right panel) and this perhaps
manifests itself in a slightly steeper slope of the RMSE for the analysis compared to the
UERRA data (right panel).

The analysis looks good with zero mean and a distinct reduction of the RMSE compared
to the first guess.

6.6.3 Two meter relative humidity
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Figure 6.19 Error statistics for Rh2m at 12 UTC. Left: bias (dashed lines) and standard deviations (solid
lines). Right: RMSE and number of observations. Red: UERRA, blue: downscaled, green: analysis.



An example of the error statistics for relative humidity at 12 UTC is given in Figure 6.19
(plots for other hours can be found in Appendix B). In this case, the downscaling is
applied to T2m and Td2m from which Rh2m is diagnosed. Note that no observations of
Rh2m enter the analysis. Instead the comparison is done to relative humidity values
calculated from co-located observations of T2m and Td2m.

The downscaling clearly adds value compared to the UERRA forecasts (red lines in the
left panel) of relative humidity, both in terms of lower bias and lower standard deviation
(dashed and solid blue lines in the left panel). This in turn results in a lower RMSE (solid
green line in right panel). However, the analysis cannot fully compensate for the bias in
the first guess and one can see a small trend also in the bias of the analysis (dashed green
line in the left panel).

6.6.4 Daily minimum temperature
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Figure 6.20 Error statistics for the daily minimum temperature. Lefi: bias (dashed lines) and standard
deviations (solid lines). Right: RMSE and number of observations. Red: UERRA, blue: downscaled, green:
analysis.

Time series with bias, standard deviation and RMSE for the daily minimum temperature
is illustrated in Figure 6.20. Here the downscaling results in a slightly lower standard
deviation but at the same time the positive bias is increasing. This is probably related to
the way the downscaling increases the minimum temperatures during winter as seen in
Figure 6.3. That modification of the UERRA fields is not beneficial since the analysis
increments in Figure 6.13 shows that the analysis tries to compensate for this by
systematically decreasing the minimum temperatures. The explanation is that the
downscaling tries to mimic the MEPS forecast and it seems as if those are providing too
high values for the daily minimum temperatures.

Anyway, the total error in terms of the RMSE is at least not worse than that of the
original UERRA forecast. Hence at least no harm is done by applying the downscaling
also for this parameter.

Note that there is a trend towards lower RMSE values over time for the first guess. This
trend is not carried over to the analysis to the same extent, even though it should be
further strengthened by the increase in observations towards the end of the period. The
reason for this has not been investigated.
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6.6.5 Daily maximum temperature
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Figure 6.21 Error statistics for the daily maximum temperature. Left: bias (dashed lines) and standard

deviations (solid lines). Right: RMSE and number of observations. Red: UERRA, blue: downscaled, green:
analysis.

Figure 6.21 shows the error statistic in terms of bias, standard deviation and RMSE for
the daily maximum temperature. The downscaling procedure results in a small
improvement, both with respect to bias and standard deviation (blue lines in the left
panel).

The negative bias in the first guess (dashed blue line in left panel) violates the assumption
of zero bias for the optimal interpolation and is not fully eliminated by the analysis
(dashed green line in left panel).

Note that the dip in the number of available observation around the 1980s and 1990s
seems to be reflected in the RMSE of the analysis (green line in the right panel). Also
note that the trend towards lower RMSE values that was seen for the daily minimum is
not that pronounced for the daily maximum.

6.6.6 Daily precipitation
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Figure 6.22 Error statistics for the daily precipitation. Left: bias (dashed lines) and standard deviations
(solid lines). Right: RMSE and number of observations. Red: UERRA, blue: downscaled, green: analysis

Error statistics for the daily precipitation is depicted in Figure 6.22. The downscaling of
the UERRA forecasts results in lower standard deviation (sold blue line in the left panel)
as well as significantly lower bias (dashed blue line in the left panel).

The number of observations regarding the daily precipitation peaks during the 1980s and
1990s. This coincides with an improved RMSE for the first guess (solid blue line in right
panel) but is not seen clearly in the RMSE of the analysis (solid green line in right panel).



The analysis of daily precipitation shows a nice zero like bias and a distinct added value
on top of the first guess.

6.6.7 Daily snow cover
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Figure 6.23 Error statistics for the daily snow cover . Left: bias (dashed lines) and standard deviations (solid
lines). Right: RMSE and number of observations. Red: UERRA, blue: downscaled, green: analysis.

Figure 6.23 shows error statistics for the daily snow cover. The downscaling of the
UERRA forecasts almost always results in lower standard deviation (sold blue line in the
left panel) as well as a reduction in bias (dashed blue line in the left panel). There is no
clear connection between the error in the first guess and the yearly mean snow
depth (not shown), nor with its 95:th percentile. The reason behind the large errors
in the UERRA snow fields during the 1970s has not been studied.

The increase in snow depth observations during the 1980s and 1990s (gray line in right
panel) is similar to that shown for precipitation. Again there is no clear connection
between the number of observations and the RMSE of the analysis (solid green line in
right panel).

The analysis of daily snow cover shows almost zero bias and added value from the first
guess, at least during the first and last 15 years. Without the quantile mapping the
downscaling performs less well, especially during the first 15 years.

7 Conclusions

The effect of the downscaling was investigated by comparing its results with the original
UERRA forecasts and the resulting output from the optimal interpolation was evaluated
by means of cross validation and studies of analysis increments. The downscaling turned
out to be adding value to all the variables with one exception. It increased the already
positive bias of the UERRA forecasts for the night time two meter temperatures as well as
the daily minimum temperatures.

Suitable parameters for the gridpp optimal interpolation were determined using a grid
search with cross validation errors as the cost function. It turned out that the exact values
of these parameters where not critical with respect to the analysis error. Because of the
variable observation network it was however considered beneficial to let the parameters
vary during the 58 year long time period.

Results from the study of the analysis increments showed significant systematic errors for
the diurnal temperature and humidity cycles. Minimum temperatures in the downscaled
first guess were too high and maximum temperatures too low causing the relative
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humidity to be too high during the day and too low during the night. These effect where
especially pronounced during winter daytime and summer nights. The common problem
with NWP models forecasting precipitation too often also showed up here, resulting in a
positive bias in the daily precipitation, especially over mountainous regions. The maps
with analysis increments for humidity and precipitation showed some very localized
features (notably along some coastal areas) that probably are associated with stations
located at sites that do not represent the weather at the scale of the analysis.

The horizontal resolution of the SMHIGridClim data is 2.5 km but this is most probably
not the effective resolution of the data. Even if the down scaling did a perfect job, the
MEPS NWP model with its 2.5 km grid, probably have an effective resolution (i.e. the
highest spatial resolution at which there is any meaningful information about the variable)
that is about a magnitude coarser. This also means that the results from the evaluation of
the analysis increments not necessarily show that the UERRA model actually has
systematic errors, e.g. for the min and max temperatures. In order to make such claims,
one would have to compare the UERRA output with observations on a scale matching its
effective resolution.

Based on the results from the evaluation of the analysis we conclude that the
SMHIGridClim data constitutes a reasonable description of the evolution of the studied
variables in the Nordic countries (better in Sweden) for the time period 1961 - 2018. The
cross validation results for hourly T2m for example are similar to what was found for the
seNorge v2.0 and seNorge 2018 dataset regarding temperature (Lussana et al., 2016 and
Lussana et al., 2019) as shown in Table 7.1. Note that the error regarding RR for the
seNorge data only refers to cases where RR > 0.1 mm while the error for the SMHI
dataset includes all cases. Still there is a good fit at the lower end of the interval
suggesting that they are of similar quality. Also the error figures reported for the dataset
FMI_ClimGrid (Aalto et al,, 2016) is of the same magnitude as shown in the same table.
Note that it is more difficult to model temperatures and precipitation (rain as well as
snow) in Norway (and Sweden) than in Finland where the orography is not as
challenging.

Tam | M Tn Tx Tx RR | Sn
winter summer winter summer
. . 1.2 - ca2
SMHIGridClim 14-18K 1.0-12K 11lcm
1.5K mm
seNorge2.0/201 1.0 - 20-40 | 1.5-1.8 1.0 - 1.0-1.5 2-6 NA
8 1.4 K K K 25K K mm
04 -
FMI_ClimGrid | NA 1.0-1.7K 05-08K 1.5 6.3 cm
mm

Table 7.1 Mean RMSE for T2m (hourly), Tn, Tx, RR and Sn for three different gridded Nordic datasets.

8 User guidelines

In this section we aim to provide some background information and advice regarding best
practices with the hope that users of the SMHIGridClim data should be able to make the
most out of the data.



Metadata for SMHIGridClim

Parameters, [units] Temperature at 2m [K]
Daily maximum temperature at 2m [K]
Daily minimum temperature at 2m [K]
Relative humidity at 2m [%]
Daily Precipitation [kg m2 s
Snow depth [m]
Surface Altitude [m]
Land Area Fraction [%]
Horisontal resolution 2.5 km

Horisontal coverage

The data grid cover the Nordic countries: Sweden, Norway, Finland
and Denmark, as illustrated in figure 2.1.

In gridpoints outside these countries the amount of observations for
the analysis was limited, which results in that some parts of the grid
is only represented by the downscaled forecast from UERRA. Check
appendix A on observations for details.

Vertical resolution

One level only

Temporal coverage

1961-01-01 to 2018-12-31

Temporal resolution

For temperature and relative humidity, the timestamp of the analyses
differ depending on data period, as a result of the availability of
surface observations for the analyses.

1961-1967 : analyses at 00, 06, 12, 18 UTC
1968-1996: analyses at 00, 03, 06, 09, 12, 15, 18,21 UTC
1997- 2018: analyses at every hour

For the remaining parameters, the resolution is daily at the following
hours.

Precipitation: 06 - 06 UTC

Snow depth: 06 UTC

Maximum temperature: 18-18 UTC
Minimum temperature: 18-18 UTC

Data type and format

File format is Netcdf (NETCDF4 CLASSIC data model, file format
HDF5)
Metadata follows the convention CF-1.7

Grid

Projection: lambert conformal conic

Projection parameters:

earth radius = 6371229, false easting = 0, false northing = 0, latitude
of projection origin = 63, longitude of central meridian = 15,
longitude of prime meridian = 0, standard parallel = 63

Table 8.1 Data description for SMHIGridClim.
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8.1 Data format description

Table 8.1 gives an overview of the dataset, with regards to available parameters, data
coverage and description of the grid. More metadata information can be extracted from
the netcdf datafiles.

8.2 Interpreting trends

Gridded datasets, without or with information from weather prediction models like
SMHIGridClim, are what we have to rely on in order to map patterns related to climate
trends. However, a word or two of caution is appropriate. Since the dataset is based on
forecasts from the UERRA reanalysis topped with surface observations it is easy to view
it as a perfect tool to establish climate trends. However, one should bear in mind that even
if the UERRA reanalysis is based on a frozen model system (no model changes during the
historical time period) the underlying observation network is not constant. The
observations change in spatial distribution patterns, numbers and quality. Hence, even if
we don’t use the UERRA analysis data but the forecasts, they too are affected by the
quality of the analysis. The same concern is valid for the observations used in our
analysis. They also undergo, sometimes dramatic, changes in spatial and temporal
patterns. Moreover, the parameters of the analysis procedure change with time in order to
make the most out of the information from the variable observation network (with the
exception of those for the daily precipitation). This could lead to artifacts in the data that
are not to be attributed to climate change. Even if one tries to leave out model variations
(like the time dependent gridpp parameters) and just use observations there is still the
problem of stations coming and going. One resolution would be to only use the sites that
are present throughout the whole time period but that would dramatically limit the
information available for the analysis.

8.3 Variations in data quality

The two meter temperature and relative humidity are available with different time
resolutions during different time periods. Analyses at 00, 06, 12 and 18 UTC are available
for the entire time period, 1961 - 2018. These are complimented with analyses at 03, 09,
15 and 21 UTC from 1968 - 2018. Finally hourly analyses are available from 1997
onwards. As a rule of thumb there are more observations available at the 6 hourly cycles,
followed by the 3 hourly and then the hourly. Another guideline is that the number of
observations tends to be lower during the early years and then increase over time.
However, there are exceptions and one should check out the time series plots for the cross
validation data (includes the number of available observations) in Appendix B to make
sure that there are not any dramatic changes that may affect the study at hand. Note that
the difference in time resolution throughout the years can affect things like calculations of
the daily mean temperature. The data is organized in monthly files and if one uses
programs like cdo to compute daily means these may end up being based on different
numbers of analyses depending on which year one looks at.

The two meter temperature and relative humidity observations were retrieved both from
national archives in Norway, Sweden and Finland as well as the MARS archive at
ECMWF adding information also for other countries covered by the SMHIGridClim grid.
However, for the daily minimum and maximum temperatures and daily precipitation only
national data was available. This means that the quality of the analysis differs
significantly between these three Nordic countries and other areas, especially for the daily
data (the quality of the sub daily data is probably better for the national archives
compared to the MARS archive). Note that the results are probably most reliable for
Sweden. Here we had best knowledge of the observations and there are less problems
with steep topography and fractal coastlines like in Norway.

The grid covers both water and land areas but the analyses are only to be trusted over land
since the observations used were all made over land surfaces. Data for grid boxes with a



small fraction of water could still be relevant since the structure functions limit how
information is spread from land to water areas. One exception is snow cover which
should be trusted over land only since no information about the ice cover has been taken
into consideration during its analysis. The user is referred to the land-sea mask for
filtering out information given a minimum requirement on the fraction of land in the
points under investigation.

8.4 Extreme events

Using the SMHIGridClim data for studies of extreme events may be problematic. The
first guess for the minimum and maximum temperatures is based on forecasts of
minimum and maximum temperatures during 12 time intervals throughout the day and
that is good. However, these forecasts are from the coarser UERRA model. The
downscaling is then done for each time interval which is also good. One should however
bear in mind that the downscaling is static at 00 and 12 UTC and since it is based on
linear regression it tries to make the best fit with the mean error as the target. Hence it
will probably not be very good at catching the extreme situations with inversions and the
like. Similar cautions should be taken when looking at extreme precipitation. Besides the
cautions mentioned earlier, another factor enters the equation. The OI analysis assumes
that the error follows a normal distribution but for the high precipitation interval this will
no longer hold. There is also the problem with precipitation being an on-off event. There
is one probability for no precipitation and there is another probability for precipitation
that in turn is associated with the probability regarding its value. Combined, this results in
the precipitation analysis being smeared out and losing information about the high end
tail of the distribution. There are plans on doing tailored analyses for extreme
precipitation as mentioned in the next section.

9 Discussion

This section presents discussions on how the current SMHIGridClim data could be
improved by increasing its quality, the area extent or the time period covered.

9.1 Improving the quality of the analysis

The quality of the SMHIGridClim data was shown to be comparable to other Nordic
climatological analysis datasets. However, also some weaknesses were identified.

First the number of observations outside Sweden, Norway and Finland could be
increased. There is more data available from the E-OBS but work need to done in order to
make sure that the measuring times are compatible with what is aimed for in
SMHIGridClim. One could also think of redistributing observations that refer to other
intervals than 06-06 for RR and 18-18 for Tn/Tx, e.g. based in hourly information from
the first guess. How successful such an approach would be need to be investigated.

If the current analysis was to be complemented by another analysis that only covers the
time period of the “remote sensing era” (e.g. 1980 onwards) one could think of improving
the quality by adding remote sensing observations in terms of satellite and radar data.

The downscaling of the T2m was shown to result in a positive bias during the night and
this is probably due to the MEPS forecasts being biased. Since the downscaling tries to
mimic them it too will be biased. This problem could be tackled by finding other high
resolution data without such bias. Unfortunately, the new Arctic regional reanalysis
CARRA does not cover the entire SMHIGridClim area, otherwise that could have been
an alternative. If the SMHIGridClim data is revisited using data from CERRA (see
below) one could possibly find a match between CARRA data and MEPS data from a
later time period where the T2m bias in MEPS could have been reduced. The analyses of
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Td2m, Tn and Tx are also affected by the MEPS bias for T2m and would hence also
benefit from establishing a better downscaling of T2m. Finally, another alternative would
be to skip the downscaling and settle for the 5.5 km resolution in the CERRA Land data.
Since the effective resolution is probably much coarser than this it may not impact the
quality in any significant way. Adaptations to high resolution topography is always
possible as a post processing stage. One could also think of using a dynamic vertical
adaptation (possible capturing inversions) depending on the CERRA 3D profiles, like
what was done in EURO4M.

The downscaling of the daily precipitation worked reasonably well but the analysis did
not take into consideration the non-normal distribution of this parameter. This causes
problems both for cases with zero and high precipitation. As noted before the problem
with the on-off behavior of precipitation could be reduced with a two step approach
where first the area where there is precipitation is analysed and a second step then
provides an analysis of how much precipitation there was within the precipitation area
from the first step. The analysis of extreme precipitation could be improved by
transforming the variable, before the analysis, in order to make it more normally
distributed at the high end, e.g. using a box-cox transformation. After the analysis the
variable is then back-transformed in order to be interpreted as precipitation again.
Another thing that could be tried is a quantile mapping, perhaps with a focus on the high
precipitation values.

The analysis of the temperature related entities was used with time varying parameters for
the gridpp OI analysis function. However, it turned out that analysis was rather
insensitive to the exact values of these parameters. Since the changes in those parameters
still could show up when looking at trends in the temperature data one could consider
redoing the analysis with a fixed set of parameters tuned to provide the best possible
performance during the entire time period.

10 Extension of SMHIGridClim

Analysis with gridpp depends on that there is both reanalysis fields for the first guess and
surface observations with good quality available. Thus, an extension of the dataset with
regards to time period, grid area and/or analyzed variables requires satisfying input data
of both types. As an alternative for some variables it is more relevant to complement
SMHIGridClim data with other data sources, it is beneficial if they are or can be
transformed into the same grid area and resolution. Below are a number of alternatives
and perspectives of future work.

10.1 Additional variables

The present dataset includes near-surface air temperature and near-surface relative
humidity (1-6 hourly resolution), as well as daily near-surface maximum and minimum
temperatures, precipitation and snow depth. Examples of other parameters of interest are
wind, solar radiation and more detailed data for precipitation and its extremes. There are
also an interest in data for other non-meteorological parameters such as ground frost, and
hydrological/oceanographical data, to calculate climate indices.

Wind is a difficult variable despite the fact that there is both forecast fields and
observations available, since wind observations often are only representative for the very
local conditions where the stations are located. Here it is probably better to use forecast
fields, like in the EURO4M reanalysis project (precursor to UERRA) where the wind was
downscaled semi-dynamically from 22 km to 5.5 km horizontal resolution and a similar
approach could be used here as well.



For solar radiation and clouds, there are too few surface observations to process with
gridpp. Thus it is more relevant to have a methodology based on satellite data. At SMHI
the STRANG model is available with data for northern Europe (covering the years 1999-
present), where work is currently being done to improve the cloud modeling by
implementing optical depth from satellite observations. There are also other solar
radiation datasets available, e.g. based on satellite or reanalysis data. However, their
horizontal resolution is coarser than the 2.5 km used for SMHIGridClim.

Non-meteorological parameters such as ground frost or hydrological or oceanographical
parameters, needs to be provided from other models, directly or by processing of
GridClim variables.

Instead of trying to improve a single analysis of daily precipitation one could also think of
making an analysis dedicated to extreme precipitation based on variable transformations.
Relaxing the requirement of providing a good analysis for all precipitation amounts it
would probably be easier to find a good solution for the extreme case separately.

10.2 Extended time period

To extend the dataset beyond 2018, another first guess than downscaling UERRA-
HARMONIE needs to be used, as UERRA-HARMONIE ends in July 2019. Presently
CERRA/CERRA-Land is the strongest candidate, that starts in 1984 and extends to near
real time.

Another possibility is to extend with data from the operational version of GriPP analysis
that is being setup at SMHI as successor to the current MESAN system. The operational
gridpp analysis will be performed on the MEPS grid and hence it will overlap the
SMHIGridClim grid with the same projection and resolution. Possible drawbacks are that
the gridpp Ol-parameters as well as the underlying observation network will differ
making it more difficult to investigate climate trends.

Data could also be extended backwards, using ERA-5 that starts back in 1950. However
as there is already a lack of observations in the early 1960 where SMHIGridClim starts, it
is uncertain if there are enough observations for the analysis to bring extra value.

10.3 Extended data region

The current version of SMHIGridClim covers a Nordic region as shown in Figure 2.1.
The main difficulty regards to spatial coverage was to access observations within the time
available for the project. In any future reanalysis it should be considered to extend the
data region to widen the applicability of data. Fore instance as input to hydrological
(covering catchment areas) and oceanographic models (covering relavant sea areas), in
combination with additional parameters needed. However, in order to be of value for
oceanographic applications remote sensing data is probably vital. In the current analysis,
(almost) no information is added to areas covered by sea.

The method used for the first guess with downscaling using MEPS forecast is limited by
the smaller area covered by MEPS, but on the other hand if CERRA-Land is used the
horizontal resolution of 5.5 km might be sufficient.

More observations can be retrieved from the E-obs dataset from KNMI, where a good
contact is already established. It would be of value to have a closer collaboration as we
learned in the current project that good knowledge about the observation dataset are
critical. Furthermore, if data is to be extended in time and geographical area, it would be
relevant to look for collaborative efforts among for instance the Nordic institutes.
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SMHI Publications

SMHI publishes seven report series. Three of these, the R-series, are intended for international
readers and are in most cases written in English. For the others the Swedish language is

used.

Names of the Series Published since

RMK (Report Meteorology and Climatology) 1974

RH (Report Hydrology) 1990
RO (Report Oceanography) 1986
METEOROLOGTI 1985
HYDROLOGI 1985
OCEANOGRAFI 1985
KLIMATOLOGI 2009

Earlier issues published in serie RMK

1 Thompson, T. Udin, I. and Omstedt, A.
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Sea surface temperatures in waters
surrounding Sweden
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Development on an unsteady atmospheric
boundary layer model

3 Moen, L. (1975)
A multi-level quasi-geostrophic model for
short range weather predictions

4  Holmstrom, 1. (1976)
Optimization of atmospheric models

5  Collins, W.G. (1976)
A parameterization model for calculation of
vertical fluxes of momentum due to terrain
induced gravity waves

6  Nyberg, A. (1976)
On transport of sulphur over the North
Atlantic

7  Lundqvist, J-E. Udin, L. (1977)
Ice accretion on ships with special emphasis
on Baltic conditions

8  Eriksson, B. (1977)
Den dagliga och érliga variationen av
temperatur, fuktighet och vindhastighet vid
nagra orter i Sverige

10

11

12

13

14

15

16

Holmstrom, 1. and Stokes, J. (1978)
Statistical forecasting of sea level changes in
the Baltic

Omstedt, A. and Sahlberg, J. (1978)
Some results from a joint Swedish-Finnish
sea ice experiment, March, 1977

Haag, T. (1978)
Byggnadsindustrins viderberoende,
seminarieuppsats i foretagsekonomi, B-niva

Eriksson, B. (1978)
Vegetationsperioden i Sverige berdknad fran
temperaturobservationer

Bodin, S. (1979)

En numerisk prognosmodell for det
atmosfariska gransskiktet, grundad pa den
turbulenta energiekvationen

Eriksson, B. (1979)
Temperaturfluktuationer under senaste 100
aren

Udin, 1. och Mattisson, 1. (1979)
Havsis- och snéinformation ur
datorbearbetade satellitdata - en modellstudie

Eriksson, B. (1979)
Statistisk analys av nederbordsdata. Del 1.
Arealnederbord
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24

25

26

27

28

29

Eriksson, B. (1980)
Statistisk analys av nederbdrdsdata. Del II.
Frekvensanalys av manadsnederbord

Eriksson, B. (1980)
Arsmedelvirden (1931-60) av nederbérd,
avdunstning och avrinning

Omstedt, A. (1980)
A sensitivity analysis of steady, free floating
ice

Persson, C. och Omstedt, G. (1980)
En modell for berékning av luftféroreningars
spridning och deposition pa mesoskala.

Jansson, D. (1980)

Studier av temperaturinversioner och vertikal
vindskjuvning vid Sundsvall-Harnosands
flygplats

Sahlberg, J. and Tornevik, H. (1980)
A study of large scale cooling in the Bay of
Bothnia

Ericson, K. and Harsmar, P.-O. (1980)
Boundary layer measurements at Klockrike
Oct 1977

Bringfelt, B. (1980)
A comparison of forest evapotranspiration
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Uncertainty in wind forecasting for wind
power networks

Eriksson, B. (1980)
Graddagsstatistik for Sverige
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200-ariga nederbordsserier
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30
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32
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(Precipitation statistics with practical
applications.)
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Similarity theory and resistance laws for the
atmospheric boundary layer
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Tornevik, H. (1982)
An aerobiological model for operational
forecasts of pollen concentration in the air

Eriksson, B. (1982)
Data rérande Sveriges temperaturklimat.

Omstedt, G. (1984)
An operational air pollution model using
routine meteorological data

Persson, C. and Funkquist, L. (1984)
Local scale plume model for nitrogen
oxides. Model description
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