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Summary
A gridded dataset (SMHI Gridded Climatology - SMHIGridClim) has been produced forthe years 1961 - 2018 over an area covering the Nordic countries on a grid with 2.5 kmhorizontal resolution. The variables considered are the two meter temperature and twometer relative humidity on 1, 3 or 6 hour resolution, varying over the time periodcovered, the daily minimum and maximum temperatures, the daily precipitation and thedaily snow depth. The gridding was done using optimal interpolation with the gridppopen source software from the Norwegian Meteorological Institute.
Observations for the analysis are provided by the Swedish, Finish and Norwegianmeteorological institutes, and the ECMWF. The ECA&D observation data set (e.g. usedfor the gridded E-OBS dataset) was considered for inclusion but was left out because ofcomplications with time stamps and accumulation periods varying between countries andperiods. Quality check of the observations was performed using the open source softwareTITAN, also developed at the Norwegian Meteorological Institute.
The first guess to the optimal interpolation was given by statistically downscaledforecasts from the UERRA-HARMONIE reanalysis at 11 km horizontal resolution. Thedownscaling was done to fit the output from the operational MEPS NWP system at 2.5km with a daily and yearly variation in the downscaling parameters.
The quality of the SMHIGridClim dataset, in terms of annual mean RMSE, was shown tobe similar to that of gridded datasets covering the other Nordic countries; “seNorge”from Norway and the dataset “FMI_ClimGrid” from Finland.

Sammanfattning
Ett klimatologiskt griddat datasett (SMHI Gridded Climatology - SMHIGridClim) hartagits fram för åren 1961 – 2018. Data täcker de nordiska länderna med en horisontellupplösning av 2,5 km. Variablerna som tagits fram är lufttemperatur och relativluftfuktighet vid 2m höjd med en upplösning av1,3 eller 6 timmar beroende av tidsperiod,samt dygnsupplöst min- och maxtemperatur, nederbörd och snödjup. Datasetet ärframtaget med optimal interpolation av stationsdata genom analysverktyget gridpp, somär en öppet tillgänglig programvara från Norska Meteorologiska Institutet.
Observationer till analysen har erhållits från de svenska, norska och finskameteorologiska instituten, samt ECMWF. En ansats gjordes också att användaobservationer från datasetet ECA&D från KNMI, men på grund av svårigheter med atttidsstämplarna för data från olika länder inte överensstämde, uteslöts datasetet uranalysen. Kvalitetskontroll av observationerna gjordes med programvaran TITAN, somäven den finns tillgänglig från och utvecklats av Norska Meteorologiska Institutet.
Som en första gissning till interpolationen användes statistiskt nerskalade prognosfält(från 11 km till 2,5 km upplösning) från UERRA-HARMONIE. Nerskalningen gjordesmot fält från den operationella numeriska väderprognosmodellen MEPS. Anpassningengjordes med nedskalningsparametrar som varierar över året och dygnet.
Kvalitén hos ”SMHIGridClim med avseende på genomsnittligt RMSE är liknande densom tagits fram för griddade data för andra nordiska länderna med varierandeanalysmetoder; “seNorge” från Norge och “FMI_ClimGrid” från Finland.
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1 Introduction
The SMHI Gridded Climatology was developed to meet the need for a climate referencedataset covering Nordic countries with high resolution, reaching back to 1961. In firstplace it was designed to be used for the climate scenario service at SMHI, with regards toa reference for historical data and for bias adjustment of model climate scenarios.
A review of available datasets showed that the best candidate as climate reference forNordic conditions today is the Nordic Gridded Climate Dataset (NGCD) from MetNorway (Lussana et al., 2019). However NGCD does not provide data for the entireperiod back to 1961, neither does it provide sub daily information about the variables.Another candidate was data from the UERRA surface reanalysis with MESCAN-SURFEX. It provides analyses of daily accumulated precipitation and six-hourly analysesof air temperature and relative humidity. However, analyses are only available at hour 00,06, 12 and 18. It lacks analysis of Tn, Tx, and Sn and have been shown to have somequality issues with RR.
The methodology used here is based on combining a first guess from reanalysis fieldswith observations, using the gridpp system which is an open source software from theNorwegian Meteorological Institute. Setting up a surface reanalysis system with gridpp atSMHI also provided a start for a production chain of climate data, where additionalparameters can be considered. In addition there are synergies with a systemsimultaneously being implemented for production of near-realt time climate data. Thissystem is also using gridpp and is the candidate for replacing the current operationalsystem MESAN.
Observations are provided by the Swedish, Finish and Norwegian meteorologicalinstitutes, and the European Centre for Medium-Range Weather Forecasts (ECMWF).Quality check of the observations was performed using the TITAN package developed atthe Norwegian Meteorological Institute. For reanalysis data, fields from UERRA-HARMONIE with a horizontal resolution of 11 km were downscaled, using forecastsfrom the Nordic operational NWP system MEPS for an overlapping period, resulting indata fields with a horizontal resolution of 2.5 km for the analysis. An illustration of theprocessing steps is shown in fig.1.1 below, and are described more in detail in respectivesection of this documentation.
Variables produced with the system are near-surface air temperature (T2m), near-surfacemaximum and minimum temperatures (Tx and Tn), precipitation (RR), near-surfacerelative humidity (Rh2m) and snow depth (Sn).
Data spans the years 1961-2018 as reanalysis fields from UERRA are available for thisperiod of time. The time resolution of temperature and relative humidity data varies overthe years, from every 6th hour for the period 1961-1967, every 3rd hour for the period1968-1996, and every hour for the period 1997-2018, depending on the amount ofobservational data available. For the remaining parameters, the resolution is daily.
Data are provided for an area covering Sweden, Norway, Finland and the vicinity of theBaltic sea. The quality of the analysis varies over time, as it depends on the quality of theforecasts as well as the quality and density of the observations that are available for theanalysis. Besides the actual analysis for a given data, the system also outputs a map withan estimate of the error in the analysis and a list of the observations used together with thevalues of the first guess, the analysis and the cross validation at each observation point.
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Figure 1.1 Simple overview of the processing steps of data for analysis with gridpp, and the producedvariables in SMHIGridClim.

2 Data
For the analysis, observations as well as gridded fields of numerical weather prediction(NWP) data were used for the targeted variables: T2m, Tx, Tn, RR, Rh2m and Sn.However, for the two latter variables, the analysis was not entirely based on data of theseentities.
For near-surface humidity conditions the analysis with gridpp was done on near-surfacedewpoint temperature (Td2m) instead of relative humidity. The reason for this is that it ismore difficult to analyze a variable with hard lower and upper limits as is the case forrelative humidity at 0% and 100%. Also snow depth was not available as a parameterfrom NWP analysis. Instead snow depth had to be derived from the snow waterequivalent and snow density.

2.1 Numerical weather prediction data
Forecasts from the UERRA-HARMONIE reanalysis (UERRA, 2020) were used as astarting point for the creation of the first guess fields entering the analysis. It is worthpointing out that the analysis fields from UERRA-HARMONIE (available at 00, 06, 12and 18 UTC) are not used for the first guess. The reason for this is that these fieldsalready include information from some of the observations that will be used in the presentanalysis.
The UERRA-HARMONIE fields were complemented with matching forecasts from theNordic operational NWP system MEPS (Frogner et al., 2019) for the overlapping timeperiod 201601-201907. This combination allowed for a downscaling of the originalUERRA-HARMONIE forecasts, at a horizontal resolution of 11 km, to theSMHIGridClim grid, defined as a subset with 823 x 567 (rows x cols) points from theMEPS grid at a horizontal resolution of 2.5 km. The three regions defining the model areaof UERRA-HARMONIE, MEPS and SMHIGridClim are shown in Figure 2.1.
UERRA-HARMONIE data was partly available on disk at the National SupercomputerCentre (NSC) at Linköping university at the start of the project, and was thensupplemented with additional data from the Meteorological Archival and RetrievalSystem (MARS) at ECMWF. Table 2.1 lists the forecast cycles and lengths of theUERRA-HARMONIE forecast fields used for the different entities in the SMHIGridClimdataset.



Figure 2.1 The areas covered by the different model grids. Red: UERRA-HARMONIE at 11 km. Blue: MEPSat 2.5 km. Green: SMHIGridClim at 2.5 km (subset of the MEPS grid).

MEPS data was retrieved from the MARS archive at NSC. In this case only 6 hourlyforecast data was retrieved for T2m and Td2m, i.e. for 00+06, 06+06, 12+06, and 18+06.No MEPS fields for Tn and Tx were retrieved, instead T2m relations for the midpoint ofeach Tn/Tx time window were used, see Table 2.1. Snow depth is only measured at 06UTC so 00+06 forecasts were used. However, Sn was not available as a parameter fromUERRA-HARMONIE and MEPS. Instead it had to be derived from the snow waterequivalent and snow density. Unfortunately the snow density was not available from theMEPS model so only the snow water equivalent was downscaled. Daily precipitation wasderived from a combination of accumulation periods as described in Table 2.1.
Daily minimum and maximum temperatures were derived as point-wise min and maxvalues over the 12 forecast fields in Table 2.1. Note that the last three fields from the 12UTC cycle relate to the 12 UTC cycle from the previous day. The daily precipitation (06-06 UTC) was calculated as rr24@00+18 - rr24@00+06 + rr24@12+18 - rr24@12+06.Note that the 00 UTC cycle refers to the previous day. The reason for this combination ofprecipitation forecasts was twofold. First we wanted to avoid moist spin-up problems andhence dismiss the forecasts during the first six hours. Second, the data assimilation at 00and 12 UTC are supposed to contain more information than other cycles. Since shorterforecasts are supposed to be more reliable than longer ones we did not consider to use thesimpler expression rr24@00+30 - rr24@00+06.
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Variable Forecastcycle 00 Forecastcycle 06 Forecastcycle 12 Forecastcycle 18
T2m, Rh2m 00+0100+0200+0300+0400+0500+06

06+0106+0206+0306+0406+0506+06

12+0112+0212+0312+0412+0512+06

18+0118+0218+0318+0418+0518+06
Tn/Tx 18-18 00+03-0400+04-0500+05-0600+06-0900+09-1200+12-15

12+03-0412+04-0512+05-0612+06-0912+09-1212+12-15
RR 06-06 00+0600+18 12+0612+18
SWE, rho 00+06

Table 2.1 Forecast cycles and lengths of the UERRA-HARMONIE fields for the different entities in theSMHIGridClim dataset. (SWE: snow water equivalent, rho: snow density)

2.2 National data sets
Local observations were collected from the national meteorological services in Sweden,Norway and Finland. Swedish observations are extracted from SMHI’s MeteorologicalObservational Real-time and Archive (MORA) database. More information (in Swedish)can be found here https://www.smhi.se/data/utforskaren-oppna-data/. Data is qualitycontrolled and more data is added constantly, both by adding real-time observations aswell as by adding historical observations through data rescue activities. SMHI has anopen data policy so the data is freely available. Data from the Norwegian MeteorologicalInstitute were fetched via with the Frost API (personal communication with MarikenHomleid). Frost is MET Norway’s archive of historical weather and climate data and thedata is freely available (see https://frost.met.no). Data from the Finnish MeteorologicalInstitute (FMI) were fetched from FMI’s internal data base (personal communication withViivi Kallio-Myers). However, data should be also freely available athttps://en.ilmatieteenlaitos.fi/open-data.
It is note worthy that the fetching of the observations from the national data archives wasincomplete in the first attempts. Comparisons with BUFR (see section 2.3) and ECA&Ddata (section 2.4) revealed that data from the national archives were missing from allinstitutes. Following reasons were discovered for the missing data.
1. At SMHI, the fetching scripts include source code that check if data are available forthe specified time. However, unfortunately, the test checked only if T2m was availableand did not consider other parameters. So, dates without T2m were neglected even ifother parameters as e.g. precipitation were available.



2. At MET No, data was prepared based on a station list including active stations only.For instance, data from stations that are not operational any longer were missed.3. FMI used bad keywords for latitude and longitude, which were then reported as zero.However, observations without information on the position of the data cannot be usedin the system. Another miss was the station height. For some older stations thecorresponding information could not be created and consequently the data could notbe used for SMHIGridClim.
The lesson learnt here is that the number of observations need to be checked against othersources as much as possible. Beside a fix for the station height for some of the Finishstations, all discovered bugs were solved within a couple of days.
For near-surface humidity conditions Td2m was analyzed instead of Rh2m as explainedfurther in section 5. However, for the early years of the SMHIGridClim period thenational Norwegian data set includes only a few Td2m observations but more Rh2mobservations. Therefore, for Norwegian data all Td2m observations have been calculatedas a function of observed T2m and Rh2m. The relationship used between Rh2m, T2m andTd2m is:
Rh2m = 100*exp( (17.625*Td2m) / (243.04+Td2m) ) / exp( (17.625*T2m) /(243.04+T2m) ),
with unit °C for T2m and Td2m. Finally all Td2m observations from all data streams havebeen checked so they do not exceed observed T2m. If any reported Td2m observation ishigher than the corresponding T2m+5 the Td2m observation has been set to missingvalue. Any reported Td2m value in the range T2m to T2m+5 is set to its correspondingT2m value.
For daily maximum and minimum temperatures the 24h reported values valid at 18 UTCwas used and for precipitation and snow depth the daily observations valid at 06 UTC areused. The observation availability for Tn and Tx with respect to 12h reporting intervalswas examined but did not give any extra information.

2.3 BUFR observations
In addition to observations from national meteorological services, we extracted data fromthe MARS archive at ECMWF. Here, observational data are stored in BUFR-format.BUFR (Binary Universal Form for Representation of meteorological data) is a binary dataformat maintained by WMO. For our purpose, we extracted all available land surface data(LSD), see https://confluence.ecmwf.int/pages/viewpage.action?pageId=149339604.Moreover, the data is organized in different streams. Following the recommendation ofECMWF’s experts (personal communication with Cornel Soci), we fetched data fromdifferent classes and streams in the same manner as it was done for the production ofERA5 (Hersbach et al., 2020). A bufr2ascii python script, utilizing ecCodes Version2.18.0 python library, was used to extract the SYNOP station observations from theECMWF BUFR files. The script follows this example on the ECMWF confluence pages:https://confluence.ecmwf.int/pages/viewpage.action?pageId=46600851. The BUFRSYNOP observation keys extracted are airTemperatureAt2M,dewpointTemperatureAt2M and totalSnowDepth.
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2.4 ECA&D observations
The ECA&D observation data set (Klein et al., 2002) was considered for use in theSMHIGridClim analysis, however in the end we only used it for comparison anddiscussion of observation density with respect to other observation data sets. The reasonfor this is partly that the ECA&D time stamps of observations vary between countries andperiods which made it too time consuming for integration in the analysis itself.

Figure 2.2 Observation density maps of T2m (upper left July 1965), Tn (upper right July 1965), RR (lowerleft July 1965) and SD (lower right February 1965). The maps include observations from the different datasources BUFR (blue o), Norway (red x), Sweden (magenta *), Finland (green +) and ECA&D (blackdots). The observations represent those that are available for the whole month taken into account that theyare considered valid within specified limits. The numbers represent number of observations normalized bytheir corresponding representative areas, thus number of observations per month per km2.





15

Figure 2.3 Observation density bar plots per year for (top to bottom) T2m (July), Tn (July), RR (July) and SD(February). The bars are colour coded with respect to data sources BUFR from ECMWF, Norway, Sweden,Finland and ECA&D. The observations represent those that are available for the whole month taken intoaccount that they are considered valid within specified limits. The numbers represent number of observationsnormalized by their corresponding representative areas, thus no obs per month per km2.

2.5 Observations density in space and in time
The spatial density of observations vary over time, considering both decadal time scaleand diurnal time scale, and depends also on which observed quantity is considered. Figure2.2 shows examples of the distribution of T2m, Tn (Tx is the same), RR and SD in 1965.In Appendix A similar plots for every 10 years are presented. The plots include positionsof all valid observations for a specific month meaning observed values within reasonablelimits and where metadata for position and altitude exists. For T2m and Sn it is clear howimportant the national data sets are since the available BUFR data are very limited duringthe early years of the SMHIGridClim period. For Tx, Tn and RR the national datasets arecrucial since no BUFR data are available here. Although ECA&D observations are notused its coverage is good in Scandinavia. However, outside Scandinavia its coverage isvery variable.
The observation density on decadal time scale is shown in Figure 2.3. The increase inT2m observations after 1995 is explained by the increase of automatic weather stationswhich partly increase the density but very much so the frequency in observations whichmeans more stations with hourly reporting. The Tn figure reflects more the increase innetwork density since these observations are always reported only once per day. The RRobservations show a decreasing trend in number from the 1980s and onwards for all datastreams. The network of snow observations, also daily, does not show any clear trend forSweden or Finland. However, the Norwegian network density shows a clear reductionbetween 2000 and 2005.
No figures are shown for how number of observations per hour over the day for T2m andTd2m vary on decadal time scale but an analysis of the numbers show that it is notmeaningful to analyse more than every 6th hour for the period 1961-1967 and every 3rdhour for the period 1968-1996. From 1997 and onwards the automatic weather stationnetwork is dense enough to allow an analysis for every hour over the day although thedensity of observations still vary considerbale between the traditional reporting hours andthe intermediate ones.



The northern part of Scandinavia shows some data sparse areas. Noticeable are an area innorthern Finland, close to the Swedish border and an area in northern Sweden close to theNorwegian border. For such relatively data sparse areas the analysis will show largeruncertainty.
The data density seems to be comparable between the ECA&D data set and the nationaldata sets for Tn, Tx and RR. However, there are station locations in the ECA&D data setnot represented in the national data sets. The reasons for this are not understood and havenot been further investigated in this project. ECA&D observations for snow depth overFinland seem to be missing for unknown reasons.

3 Observation quality control
For the observation quality control the TITAN package(https://github.com/metno/TITAN/wiki) developed at Met.Norway (Båserud et al., 2020)was used. Please note that this TITAN package is now being replaced by titanlib(https://github.com/metno/titanlib/wiki) and future applications will probably be betterbased on titanlib. However, at the time of this project titanlib was still not mature enoughto be used for production.
The required input data for TITAN is station position (latitude and longitude), stationaltitude and the observation to be checked. All provided observations are assumed to bevalid for a certain time, thus TITAN does not correlate observations over time. TITANoffers a number of different quality checks and options (Båserud et al., 2020). The onesapplied in this study are described in the following section. The TITAN output includes aData Quality Control (DQC) code indicating if the observation is considered correct(DQC=0) or suspicious (DQC>0).
3.1 Digital Elevation Map check
By providing a Digital Elevation Map (DEM) at a given map projection and resolution asNetCDF file TITAN can check if the altitude specified for each observation station agreesto the DEM within certain limits (option --dem, DQC=5). The DEM used in this case isbased on GMTED2010 (Danielson and Gesch, 2011) which is provided as SURFEXinput format (GMTED2010_075.EHdr) at 250 m resolution via the SURFEX web pagehttp://www.umr-cnrm.fr/surfex/spip.php?article134. This global data set has beenprocessed by a SURFEX setup to provide a DEM at 500 m resolution for TITANcovering the area of SMHIGridClim. The allowed deviation (--dz.dem) between the DEMand the provided station altitude is set to 300 m. The DEM check is applied toobservations of T2m, Td2m, Tn and Tx. In complex terrain areas, like for example theNorwegian fjord landscape, the DEM check may not be relevant since 500 m DEMresolution is still too coarse. For such areas the DEM DQC flag has not been considered(see the gridpp section for more information).
3.2 Digital Elevation Map fill
The DEM can also be used to fill missing elevation data (option --dem.fill). This option isapplied to the precipitation and snow depth observations to allow for more observationsto be used from the Finland observation dataset during the period 1961-1979 whenelevation data are missing for some stations. The DEM fill option has no impact ifelevation is specified in the input data.
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3.3 Missing observations or meta data
If any of the input data includes Not a Number the observation is flagged as missing dataor metadata with DQC=1.
3.4 Plausibility range
If an observation is outside specified bounds (--vmin and --vmax) the observation isflagged as failing the plausibility test with DQC=2.
3.5 Buddy check
The buddy check (DQC=4) compares the observations against the average of allneighbours in a square box centred on each observation. The distance (--dr.buddy, default3000 m) from the central observation to the sides of the box is specified. A minimumnumber of observations (--n.buddy, default 5) is required to be available in the box, andthe range of elevations must not exceed a specified threshold (--dz.buddy, default 30 m).Several buddy checks in a row can be specified by the desired number of iterations (--i.buddy, default 1). The observation is flagged as suspicious if the deviation between theobserved value and the box-average normalized by the box standard deviation exceeds apredefined threshold (--thr.buddy, default 3). A minimum allowed value for the standarddeviation can be specified (--sdmin.buddy). The buddy check is always applied by defaultin TITAN but especially adjusted settings have here been used for precipitation and snowdepth observations. In practice, the default setting of dr.buddy=3000 m means that thebuddy check will not have an influence on other variables in the SMHIGridClimobservation network.
3.6 Spatial consistency test
The spatial consistency test (SCT, DQC=5) acts as a more sophisticated buddy check byevaluating the likelihood of an observation given the values observed by the neighbouringstations (Lussana et al., 2010). The SCT is performed independently over severalsubdomains of the region defined by a predefined grid with a number of rows andcolumns (--grid.sct). The grid boxes can be smaller for a dense observation network. Forthe SMHIGridClim area we have normally used 3x3 grid boxes except for theobservations every 3rd hour after 1996, when the observation network is considered a bitmore dense, where we have used 5x5 grid boxes. Depending on the sign of the cross-validation (CV) residual in Eq 4 of Lussana et al. (2010) there are a few options for thethreshold in Eq 4 in TITAN: the threshold (--thr.sct) is used for both positive andnegative CV residuals or thresholds are specified separately for positive (--thrpos.sct) andnegative (--thrneg.sct) CV residuals. Apart from these mentioned options the defaultTITAN values are used for other SCT options. The SCT test is used as the main qualitytest for T2m, Td2m, Tn and Tx. For precipitation and snow depth it is also used but thethresholds are given quite high values which means that only quite extreme deviationswill be flagged.
3.7 Duplicates
Stations can be reported in more than one observation data stream, e.g. in BUFR and inthe Swedish national data. To avoid such duplicates in the analysis we apply the no-duplicates option in TITAN (--no_duplicates) where stations are not allowed to be locatedcloser than 0.01 deg apart (--dup.match_tol_x 0.01) and 100 m apart in altitude (--dup.match_tol_z 100). If duplicates are identified the last station in the list is used. InSMHIGridClim we give priority to national data streams with respect to the BUFR datastream. The duplicates are removed before any other processing of observations are donein TITAN. Thus, there is no DQC flag indicating duplicates.



3.8 First guess check
Besides the checks done with TITAN prior to the analysis, there is also a gross errorcheck done against the first guess in the script that does the analysis. However, there isone exception, the observations of daily precipitation are not compared to the first guess.The reason for this is that the true precipitation field may be very patchy and we do notwant to risk losing important information regarding local showers that were missed by theforecast model.
The check is done by interpolating the first guess to the observation points using a bi-linear interpolation. For temperature this interpolation also takes into account heightdifferences between the model grid and the observation site (-0.0065 K/m and -0.0017K/m for t2m and dt2m respectively). The difference is then compared to the standarddeviation of all these differences. If the difference at any given point is larger than threetimes the standard deviation it is considered as a gross error and the observation isremoved.
3.9 Comments
The TITAN isolated station check has been deactivated for SMHIGridClim by setting theoption --doit.isol to 2.

4 Downscaling the first guess
During the time period January 2016 - July 2019, data from both UERRA and MEPS wasavailable. Data from this period was used to establish a relation, based on a linear leastsquares regression, between a given point in the subarea of the MEPS grid constitutingthe SMHIGridClim region (at 2.5 km) and its surrounding 4 x 4 neighboring points in theUERRA grid, at 11 km horizontal resolution.
An example with the T2m from UERRA (interpolated to the 2.5 km grid) and thecorresponding downscaled field is given in Figure 4.1. In the right panel of the samefigure it is shown how one gridpoint (dark red) in the 2.5 km grid (pink) is associatedwith its surrounding 16 nearest neighbors (dark blue) from the 11 km UERRA grid (lightblue).

Figure 4.1 Example showing the downscaling of T2m. Left: Original UERRA field interpolated to theSMHIGridClim grid (unit: degrees Celsius). Middle: Downscaled field. Right: Schematic illustration ofhow a point (dark red) in the 2.5 km grid is associated with its 4x4 neighbourhood (dark blue dots) in the11 km UERRA grid.
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For T2m and Td2m, these linear least squares regressions were performed for nighttime(00 UTC) and daytime (12 UTC) as well as for the mid winter (represented by daynumber 0) and mid summer (represented by day number 183). The final weighting withrespect to hour and time of the year was done combining the weights for day/night andwinter/summer by using squared cosine functions centered around 00 and 12 UTC and atday number 0 and 183, see Figure 4.2. Thus resulting in 16 x 4 regression parameters foreach point in the new grid for each of the parameters.

Figure 4.2 Weighting functions for the estimation and application of the downscaling parameters. Left: Dailyweighting functions for 00 and 12 UTC parameters. Right: Weighting functions for the seasonal parametersat day number 0 (winter) and 183 (summer).

For Tn and Tx, no separate regression was done, instead the relations obtained for T2mwere used for each of the twelve hours throughout the day (see Table 2.1). Weights forthe downscaling of RR were obtained only based on seasonal weighing with nodependence of the hour of the day, and using a non-negative least squares solution toguarantee that the downscaled result should always be positive.
After the regression parameters have been estimated based on the overlapping time periodfor MEPS and UERRA, they are used in the downscaling of the UERRA grid for theentire data period. The same weighting functions that were used to find the regressionparameters are again used to combine those parameters at any given date and time;
wd_00= cos( ( hr - 0 ) / 2 / 24*2*pi ) ^2
wd_12= cos( (hr - 12) / 2 / 24*2*pi ) ^2
wy_w= cos( ( dn - 0 ) / 2 / 365.25*2*pi ) ^2
wy_s= cos( ( dn - 365.25 / 2 ) / 2 / 365.25*2*pi ) ^2
Here wd_00 and wd_12 are the weights associated with the given analysis hour (hr) whilewy_w and wy_s are the seasonal weights associated with the analysis day number (dn).These weights are then used in a linear combination of the regression parametersassociated with 00 UTC during winter and summer (w00w, w00s) and 12 UTC for thetwo seasons (w12w, w12a).
w= wd_00 * (w00w * wy_w + w00s * wy_s) + wd_12 * (w12w * wy_w + w12s * wy_s)
As described above, only a seasonal weighting was applied for the daily precipitation.For the downscaling of Tn and Tx, each of the fields associated with the 12 intervals inTable 2.1 were downscaled separately using the midpoint for each interval in thecalculation of the weights. Constant weights were used for the downscaling of the daily



snow water equivalent.
Downscaling of the snow depth was done in three steps. First the snow water equivalentfrom UERRA was downscaled. Then it was divided by the snow density from UERRA,interpolated to the SMHIGridClim grid, to result in an estimate of the snow cover. A thirdstep was then introduced to correct for large systematic differences between theprobability distributions of the downscaled and observed snow depth data. The reasonbehind these differences has not been analyzed. The third step consisted of imposing anupper limit of 10 m to the downscaled snow depth followed by a quantile mapping (QM)of the downscaled values (Panofsky and Brier, 1968). The QM method has been shown toproduce good results when it comes to correction of systematic erros, e.g. for removingprecipitation biases (Themeßl et al., 2012).
5 Analysis with gridpp
The analyses were done using the open source software gridpp from the NorwegianMeteorological Institute (https://github.com/metno/gridpp). We used the python libraryversion of gridpp that provides functions for doing an analysis using optimalinterpolation (OI) to combine observations and gridded forecasts (the first guess) in astatistically optimal sense (Gandin, 1965). Besides optimal interpolation the library alsoprovides functions for other operations like bi-linear interpolation and diagnosing entities,like was done here for relative humidity from the two meter temperature and two meterdew point temperature.
In order to perform an OI analysis one needs to provide information about the spatialcovariances for the first guess error and the observation error. In gridpp the covariancesare separated into an error variance ratio and a correlation (structure) function where thelatter can be modeled in different ways.
We chose the more versatile function “BarnesStructure” (Barnes, 1973). Here the firstargument is the horizontal decorrelation length scale (in meters) and the second is thevertical decorrelation length scale (in meters). A third argument specifies thedecorrelation length across land area fraction (units 1), and a fourth argument specifiesthe maximum length that an observations will have an effect (in meters, also called thelocalization radius). In our case we set the last argument to zero implying that allobservations will be considered.
In order to find suitable values for the parameters regarding the error variance, ratiobetween first guess and observations error variances as well as the parameters for thestructure function we performed a cross validation. Such a procedure is also provided forby gridpp, that computes the analysis in a "leave-one-out" cross-validation fashion. Foreach output point, the observation at that point is left out of the OI analysis in order toprovide an estimate of the error at that location. Note, however, that this error may not berepresentative for the scale at which the OI analysis is performed. Still, it providesvaluable information regarding how well the analysis matches the observations in anindependent way.
Using the cross validation functionality we set up an optimization scheme where weminimized the squared cross validation error using a grid search method. Theminimization was done in a semi separable way. First the ratio between the observationand first guess errors and the horizontal correlation lengths were optimized together,assuming no vertical or land area fraction dependencies. Then the vertical correlationlength was optimized on top of this result, and finally the land fraction correlationdistance was optimized.
When the vertical and land area fraction correlation distances were optimized, onlyobservation points whose neighbors differed with respect to these entities were
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considered. Here the 75 percentile of the standard deviation of the differences in heightand land area fraction was used as a threshold to determine which points should enter theminimization. This was done in order to highlight the cases where differences in theseentities matter.
Since the optimal parameters of the structure function depends on the observation densitywe derived a set of optimal parameters throughout the time period 1961 - 2018. Optimalparameters were derived for the years 1965 (extended to 1961), 1975, 1985, 1995, 2005,and 2015 (extended to 2018). Again, separate parameters were assigned to night and dayas well as winter and summer using the same weighting functions as for the downscaling,with an extra 10 year wide weighting around the specific year:
(cos( (yr-yr_k) / 2 / 20*2*pi) ^2)
Parameters for any given year and date throughout the time period 1961 - 2018 were thenobtained by a smooth spline interpolation.
The analyses were done using the downscaled fields, described earlier as the first guess,with one exception. The analysis of the relative humidity was not done directly withgridpp. Instead it was diagnosed with the gridpp function gridpp.relative_humidity usingthe analyzed T2m and Td2m fields as input. The reason for this is that the errors of theT2m and Td2m first guess fields better fits a normal distribution than that of the Rh2mfield which is bounded to the range 0 - 100 % and hence also has an error that is boundedclose to its extremes.

6 Results
In the following sections, results of the data processing steps are presented. In section 6.1the downscaling of UERRA forecasts is evaluated in terms of the average differencebetween the downscaled fields for the first guess, and the original UERRA fields. Section6.2 presents the result of the optimization of parameters for the gridpp analysis. In 6.3climatologies of the output data from the analysis are presented, and in 6.4 the influenceof the analysis are described in terms of the analysis increments, which are the differencebetween the analysis and the first guess. Section 6.5 gives an overview of the spatialpatterns of analysis errors calculated with gridpp. Finally, in section 6.6 time series ofyearly cross validation statistics for the analysis are presented..
6.1 Downscaling
This section describes how the downscaled fields for T2m, Td2m, Tn, Tx, RR and Sncompare to the original UERRA forecast fields on a daily and seasonal basis. In order tomake the comparison on the same grid, the UERRA fields were interpolated to theSMHIGridClim grid using bi-linear interpolation.
The downscaling procedure results in fields that fit the patterns in the correspondingMEPS fields during the years 2016 - 2018. The assumption is that the performance of theMEPS forecast is superior to that of the UERRA forecast. How the downscaling affectsthe analysis performance is described in the section 6.7 regarding the cross validationresults.



6.1.1 Two meter temperature

Figure 6.1 Mean differences between T2m from the downscaled and original UERRA fields respectively (unit:K). Top left: January 12 UTC. Top right: July 12 UTC. Bottom left: January 00 UTC. Bottom right: July 12UTC.

In the winter (represented by January) the downscaling results in higher temperatures,both during night and day (figure 6.1). In the summer (July) it is the other way around,with the downscaling mostly producing colder temperatures, especially in the mountainsduring the day. Note that lakes Vänern and Vättern get slightly warmer during winter andnoticeably colder during summer.
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6.1.2 Two meter dew point temperature

Figure 6.2 Mean differences between Td2m from the downscaled and original UERRA fields respectively(unit: K). Top left: January 12 UTC. Top right: July 12 UTC. Bottom left: January 00 UTC. Bottom right:July 12 UTC.

Figure 6.2 illustrates the mean differences between the downscaled Td2m fields and theoriginal UERRA fields for night and day (00 and 12 UTC) as well as winter (January)and summer (July).
The pattern for the dew point temperature is similar to that of T2m. However, thetemperature increase during the winter is more pronounced. The cooling during thesummer day is more homogenous throughout the area while the effect is rather neutral forthe summer night. The downscaling effect on the dew point temperatures of lakes Vänernand Vättern is reduced compared to that of T2m.



6.1.3 Daily minimum and maximum temperature

Figure 6.3 Mean differences between Tn and Tx from the downscaled and original UERRA fields respectively(unit: K). Top left: Tx, January. Top right: Tx, July. Bottom left: Tn, January. Bottom right: Tn, July.

Figure 6.3 shows the mean differences between the downscaled Tn and Tx fields andtheir original UERRA counterparts during winter (January) and summer (July).
It comes as no surprise that the patterns for Tn and Tx are very similar to those of the twometer temperature at 00 and 12 UTC.
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6.1.4 Daily precipitation

Figure 6.4 Mean differences between downscaled RR24 and the original UERRA fields. Left: January. Right:July.

Figure 6.4 shows the mean differences in daily precipitation between the donwscaledfields and their original UERRA counterparts during winter (left) and summer (right).During winter the downscaling intensifies the precipitation in the mountains. For thesummer period, the downscaling instead results in a general decrease in the dailyprecipitation
6.1.5 Daily snow depth

Figure 6.5 Mean differences between downscaled Sn and the original UERRA fields. The color scale waslimited to +/- 0.5 m to reveal more details.

Figure 6.5 shows the mean differences in daily snow depth between the donwscaled fields(including the quantile mapping) and the UERRA estimate based on the ratio betweensnow water equivalent and snow density. The largest differences can be seen in Norway



and in the mountain areas. There is a slight trend towards more snow in the downscaledfields at higher latitudes.

6.2 Gridpp parameters
The gridpp parameters regarding error ratios and correlation distances were optimizedusing weighting functions centered around six reference years; 1965, 1975, 1985, 1995,2005 and 2015. Smooth spline functions were then used to interpolate the optimalparameters to any given year during the time period 1961 - 2018.
6.2.1 Two meter temperature

Figure 6.6 Time interpolation of optimized gridpp parameters. Black lines show the mean number ofobservations per analysis date on the axis to the right. Top left: Error variance ratio (unitless). Top right:Horizontal correlation (unit: m). Bottom left: Vertical correlation (unit: m). Bottom right: Land area fractioncorrelation (unitless).

The optimal gridpp parameters for the two meter temperature, and how they areinterpolated in time, is illustrated in Figure 6.6. Also shown (in the top panels) is theevolution of the mean number of observations available for the T2m analysis at 00 and 12UTC respectively. The optimal parameter values for the six reference years are shownwith crosses and dots for night (00 UTC) and day (12 UTC), while the correspondinginterpolated values are shown with dashed and sold lines respectively.
The ratio between the error variance of the observations and the error variance of the firstguess (top left panel of Figure 6.6) shows a small increase with time. This probablycorresponds to improved accuracy in the first guess (e.g. more observations used in theUERRA analysis from which the forecasts starts). The ratio is lowest during daytimewhen there is also little difference between winter and summer. It is then somewhat
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higher during the summer night and highest during the winter night. The reasons for thesedifferences have not been investigated.
The horizontal correlation distance is optimized together with the error ratio and shows asimilar pattern (top right panel of Figure 6.6). Here the connection to the observationdensity is important and it is clear that the optimal analysis at the beginning of the timeperiod needs larger error correlation distances than at the end. With a sparser observationdistribution the structure functions (error covariance functions) need to be wider in orderto get support from enough observations. Note that the number of observations duringnight time is much lower than during day time at the beginning of the time period and thatthis is reflected in wider horizontal correlation functions during the night.
The bottom left panel of Figure 6.6 shows the distance parameter for the verticalcorrelation function. Here there is little variation with the distance being somewhat longerat 12 UTC during summer.
Finally, the distance parameter with respect to differences in land area fraction is shownin the bottom right panel of Figure 6.6. The value is a bit higher during winter indicatingthat differences in land area fraction matter less during that season. This cloud beexplained by the fact that water bodies can freeze during winter and then havetemperatures more similar to their surroundings than what is the case during the summerseason.

6.2.2 Two meter dew point temperature

Figure 6.7 Time interpolation of optimized gridpp parameters. Top left: Error variance ratio (unitless). Topright: Horizontal correlation (unit: m). Bottom left: Vertical correlation (unit: m). Bottom right: Land areafraction correlation (unitless).
Optimal gridpp parameters for the two meter dew point temperature is shown in Figure6.7. The legend is the same as for the two meter temperature described in the previoussection.



For the dew point temperature, the error ratio decreases with time. This indicates thateither the measurements have less noise or the first guess has larger errors towards theend of the time period. Why and if this is really the case has not been studied.
The horizontal correlation distance for the dew point shows a similar pattern to that of thetwo meter temperature where the increase in observation density is the naturalexplanation.
The vertical correlation distance shows a somewhat disparate pattern. However, the actualinfluence of these variations on the analysis performance is rather low.
Differences in land area fraction are less important for the dew point analysis. There is atendency towards such differences being more relevant during summer noon compared toother times of the year. Again these parameter differences only results in minor effects onthe analysis performance.

6.2.3 Daily precipitation
The optimization of the gridpp parameters for the daily precipitation resulted in verysimilar values for all the reference years. Moreover there was no significant differencebetween summer and winter.
Hence, the gridpp parameters for the daily precipitation were set to constant values for allanalysis dates. The optimal values are given in Table 6.1.

Error variance ratio Horizontal distance Vertical distance Land area fraction
0.30 43 km 1800 m 0.0

Table 6.1 Optimal gridpp parameters for the analysis of daily precipitation.
Note that a value of 0.0 for the land area fraction difference means that such differenceshave no effect.

6.2.4 Daily snow depth
The optimization of the gridpp parameters for the daily snow depth also resulted in verysimilar values for all the reference years. Since snow mainly occurs during the wintertime no distinction was made between different seasons for this parameter.
The gridpp parameters for the daily snow depth were set to constant values for allanalysis dates. The optimal values are given in Table 6.2.

Error variance ratio Horizontal distance Vertical distance Land area fraction
0.90 35 km 350 m 0.55

Table 6.2 Optimal gridpp parameters for the analysis of daily snow depth.
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6.3 Climatologies
Climatologies for the analyzed entities during the time period 1991-2018 (close to theclimate standard normal period 1991-2020) are depicted in Figure 6.8. Note that theranges for the relative humidity, yearly precipitation and daily snow depth have beenclamped at the 1 and 99 percentiles in order to enhance the dynamic range. Thetemperatures where clamped at +/- 11 K for the same purpose.
In Figure 6.9 the differences between the climatological values of the same entities forthe time periods 1991-2018 and the climate normal period 1961-1990 are shown.
For all the temperature related parameters a general increase is seen throughout theanalyzed area. The largest increase is seen for the daily minimum temperature. Also themean yearly precipitation is increasing with a maximum in the south-east part of Norwaywhere the yearly precipitation is already at its highest. In Sweden the precipitation showsa noticeable increase in the west coast region. For the relative humidity the pattern ismore patchy, but indicate increased values mainly in the northern part and somewhatdecreasing values in the southern part of Sweden.
Note that there are some points standing out in the difference maps, mainly in coastalregions, and especially for the relative humidity and the precipitation. Most of thesedeviations are connected to coastal stations that are not representative on the scale of thegrid used for the analysis. However, over Sweden, which is the focus area of this analysis,the fields looks rather smooth. The snow depth is in general decreasing over Sweden.



Figure 6.8 Climatologies based on the gridpp analyses for the time period 1991-2018. Top left: hourly meanT2m. Top right: Hourly mean Td2m. Middle left: Daily mean Tn. Middle right: Daily mean Tx. Bottom left:Hourly mean rh2m. Bottom middle: Yearly mean RR. Bottom right: Daily mean Sn.
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Figure 6.9 Differences between climatologies for the time periods 1991-2018 and 1961-1990. Top left: hourlymean T2m. Top right: Hourly mean Td2m. Middle left: Daily mean Tn. Middle right: Daily mean Tx. Bottomleft: Hourly mean rh2m. Bottom middle: Yearly mean RR. Bottom right: Daily mean Sn.



6.4 Analysis increments
In this section the mean of analysis increments, which are the difference between theanalysis and the first guess, is described. Note that this means that positive values in themaps indicate that the first guess was too low and the other way round. Ideally thedistribution of the analysis increments should follow a normal distribution with zeromean. Here the first guess is given by the downscaled UERRA fields described earlier,with one exception. The first guess for the analysis of the relative humidity is insteaddiagnosed from the analyzed T2m and Td2m fields.
As part of the data quality control, analysis increments for every month during the dataperiod was inspected manually.

6.4.1 Two meter temperature

Figure 6.10 Mean analysis increments for T2m [˚C]. Top left: January 12 UTC. Top right: July 12 UTC.Bottom left: January 00 UTC. Bottom right: July 00 UTC.

The analysis increments for the two meter temperature are illustrated in Figure 6.10.During the winter noon the analysis results in a systematic increase of the temperature
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(top left panel) while it is the other way round during the summer night (bottom rightpanel).
This can be compared to the differences between the downscaled and original UERRAfields shown in Figure 6.1. The downscaling resulted in warmer fields during the winterdays but not warm enough to fit the observations. For the summer night the downscalingwas rather neutral indicating that both MEPS and UERRA have a positive bias for thatperiod.
Note that the temperature of Lake Vänern was decreased by the downscaling during thesummer but this effect is nullified by the analysis during the summer day.

6.4.2 Two meter dewpoint temperature

Figure 6.11 Mean analysis increments for Td2m [˚C]. Top left: January 12 UTC. Top right: July 12 UTC.Bottom left: January 00 UTC. Bottom right: July 00 UTC.



Figure 6.11 shows the mean analysis increments for the two meter dew point temperature.The results look good during winter with no consistent bias patterns. During summer theanalysis decreases the temperatures somewhat, both during day and night.
Comparing these results with those earlier presented for the down scaling of Td2m it canbe seen that the temperature increase imposed by the downscaling during winter had apositive effect. The decrease during the winter daytime period was also in the rightdirection but not strong enough. The night time values during the summer are a bit on thehigh side as indicated in the lower right panel of Figure 6.11.

6.4.3 Two meter relative humidity

Figure 6.12 Mean analysis increments for Rh2m [% units]. Top left: January 12 UTC. Top right: July 12UTC. Bottom left: January 00 UTC. Bottom right: July 00 UTC.

The analysis increments for the two meter relative humidity depicted in Figure 6.12 arenot really analysis increments. Relative humidity is not analyzed per se, but insteaddiagnosed from the analyses of T2m and Td2m. Anyway it can be interesting to look at
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the difference between Rh2m diagnosed from the downscaled fields of T2m and Td2m,and the diagnosed analysis. The results from such a comparison is shown in Figure 6.12.
The pattern follows that of T2m and Td2m. Since the analyses of T2m and Td2m showeda deficiency in the model input (first guess) during the warm summer and cold winterseasons, this is here reflected in too humid winter days (top left panel) and too drysummer nights (lower right panel).

6.4.4 Daily minimum and maximum temperatures

Figure 6.13 Mean analysis increments for Tn and Tx [˚C]. Top left: Tx, January. Top right: Tx, July.. Bottomleft: Tn January. Bottom right: Tn July.
It is well known that numerical weather prediction models have problems reproducing theextremes of the daily temperature cycle. This is also evident in Figure 6.13 where themean analysis increments of the daily minimum (bottom panels) and maximumtemperatures (top panels) are shown. The analysis changes the maximum to be warmerand the minimum to be colder than what is suggested by the first guess.
When this result is compared to how the downscaling affects the original UERRAforecasts, something peculiar emerges. The downscaling increases the minimum



temperature during the winter nights and decreases the maximum temperatures during thesummer day time, contrary to what the analysis suggests.
The reason for this seems to be that the MEPS model is even worse at reproducing thedaily cycle of the minimum and maximum temperatures than UERRA and that thedownscaling then replicates this bad behavior.

6.4.5 Daily precipitation

Figure 6.14 Mean analysis increments for the daily precipitation. Left: January. Right: July.
The analysis increments for the daily precipitation indicate that the first guess has toomuch precipitation in general and that the effect is largest in the Norwegian mountainregions, see Figure 6.14.
During summer, the first guess has too little precipitation along the south-west Norwegiancoast and there is also a slight tendency that the first guess underestimates theprecipitation along the Swedish west coast during the summer season (right panel).
Looking back at the results from the downscaling it is evident that the decrease of theprecipitation in UERRA during summer was beneficial. The way the downscalingincreases precipitation in parts of the Norwegian mountain chain is more questionable.However, this has not been reviewed in detail.
6.4.6 Daily snow depth
The analysis increments for the daily snow depth indicate that the first guess has too littlesnow in parts of the Norwegian mountain regions and in Finland, see Figure 6.15. Theneutral result in the eastern part of Finland is due to a lack of observations in that region.
Comparing the analysis increments with the effect of the downscaling (Figure 6.5) itseems as if the downscaling was working in the right direction. However, there is onearea north west of Östersund where the downscaling decreased the snow depth and theanalysis then revered it by adding more snow.
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Figure 6.15 Mean analysis increments for the daily snow depth.

6.5 Analysis errors
The gridpp software can output an estimate of the analysis error, i.e. a map with the point-wise error variance in the output from the gridpp OI analysis. Here the error refers to thedifference between the analysis and an imagined true value at any given point. Thequality of this estimate depends heavily on the information the user provides regardingthe observation and first guess error variances.
For the analysis, the user only has to specify the ratio between the observation and firstguess error variances. However, in order to get an estimate of the analysis error theseerrors need to be specified separately.
The first guess error variance was estimated as the variance of the error between the firstguess and the observations at any specific analysis date. This means that it is set to aconstant field but that this constant varies over time, depending on how well the firstguess fits the observations.
The observation error was then calculated by multiplying the estimated first guess errorvariance with the gridpp error ratio parameter obtained from the optimization. Hence,also the observation error variance field will be constant in space but vary over time.
The spatial variation in the analysis error comes from the way the structure function,depending on horizontal, vertical and land area fraction distances, interacts with thecurrent observational network.
In the light of the above assumptions the absolute values of the analysis errors shouldonly be viewed as crude estimates. However, the spatial patterns carries importantinformation about how the analysis error varies with respect to the underlying observationnetwork.
Analysis errors for every month during the data period was inspected manually as part ofthe data quality control.

.



Figure 6.16 Mean analysis errors. Top left: T2m (unit: K). Top right: Tn (unit: K). Bottom left: RR (unit:mm). Bottom right: Sn (unit: m).

Figure 6.16 illustrates the mean analysis errors (at 00, 06, 12 and 18 UTC) for T2m, Tn,RR and Sn over the entire time period 1961 - 2018. The error for Td2m is very similar tothat of T2m and that of Tn and Tx, albeit with somewhat lower values.
Note the difference in the error between areas where there are observations and areaswhere only the first guess is present. For the analysis of T2m and Td2m also observationsfrom the ECMWF MARS archive entered the process. This results in an analysis errorthat is rather homogenous within the SMHIGridClim area (upper left panel of Figure6.16). Some differences can be noted. The variable orography in Norway seems to pose achallenge for the NWP forecasts causing the error to be larger there than in the flatterareas of Sweden and Finland. The area east and south of Finland show a larger error thatis probably due to fewer observations in these regions.
For Tn/Tx, RR and Sn only observations from Norway, Sweden and Finland entered theanalysis. This is reflected in the analysis error being much larger outside this area. Therelative difference between the error in areas with and without observations is mostpronounced for the daily precipitation (bottom left panel of Figure 6.16). The legend was



39

clamped for both Tn, RR and Sn in order to make details visible in the region whereobservations contribute to the analysis.
6.6 Cross validation
In order to obtain a better estimate of the analysis error the cross validation results wasexamined. As mentioned earlier, the gridpp software can perform an efficient “leave-one-out” cross validation and this was used in order to find what parameters to use in theoptimal interpolation with gridpp.
However, in the production of the SMHIGridClim analysis a cross validation was alsodone at each analysis date. Hence there are cross validation estimates of the analysis erroravailable at each observation point for any given analysis (except for Rh2m that wasdiagnosed).
In the following sections the performance of the original UERRA data, the correspondingdownscaled data and the resulting analysis are compared with respect to bias, standarddeviation and root mean squared error.

6.6.1 Two meter temperature

Figure 6.17 Error statistics for T2m at 12 UTC. Left: bias (dashed lines) and standard deviations (solidlines). Right: RMSE and number of observations. Red: UERRA, blue: downscaled, green: analysis.

The added value of the downscaling and analysis compared to the original UERRA datais exemplified for the two meter temperature at 12 UTC in Figure 6.17. Plots for otherhours can be found in Appendix B.
The left panel shows time series of bias and standard deviation for the differencesbetween model fields and the observations. Hence, the negative bias of the UERRAforecast (dashed red line) valid at 12 UTC means that it is generally too cold. Here, thedownscaling improves on both the bias (dashed blue line) and the standard deviation(solid blue line). As a result the total error in terms of the RMSE is also improved by thedownscaling (solid blue line in right panel).
The statistics for other hours follow a similar pattern. However, at 00 UTC thedownscaling increases an already positive bias even more. This is consistent with thesystematic positive downscaling increments seen during the winter that was shown inFigure 6.1.
Ideally the bias of the first guess entering the optimal interpolation analysis should havezero bias. This is not the really the case here and the bias seems to grow towards the endof the time period. There is however a slight improvement in the standard deviation of theUERRA data over time (solid red line in the left panel). On the other hand, the addednumber of observations towards the end of the period (gray line in right panel) does not



lead to any significant improvement on the analysis error. The reasons behind theseeffects have not been investigated.
The bias of the analysis is close to zero (dashed green line in left panel) and the RMSE(solid green line in right panel) is improved significantly as compared to the first guess(the downscaled UERRA field, solid bule line in right panel).

6.6.2 Two meter dewpoint temperature

Figure 6.18 Error statistics for Td2m at 12 UTC. Left: bias (dashed lines) and standard deviations (solidlines). Right: RMSE and number of observations. Red: UERRA, blue: downscaled, green: analysis.

Figure 6.18 illustrates the time evolution of the bias, standard deviation, RMSE andnumber of observations for the two meter dew point temperature at 12 UTC (for plotsvalid at other hours, see Appendix B).
The downscaling (blue lines) improves the standard deviation but does not change thesystematic overestimation of Td2m in the UERRA forecasts valid at 12 UTC. During thenight (not shown here) the downscaling helps improving a negative bias at the end of thetime period (although it overcompensates somewhat in the early years).
The number of observations increases over time (gray line in right panel) and this perhapsmanifests itself in a slightly steeper slope of the RMSE for the analysis compared to theUERRA data (right panel).
The analysis looks good with zero mean and a distinct reduction of the RMSE comparedto the first guess.

6.6.3 Two meter relative humidity

Figure 6.19 Error statistics for Rh2m at 12 UTC. Left: bias (dashed lines) and standard deviations (solidlines). Right: RMSE and number of observations. Red: UERRA, blue: downscaled, green: analysis.
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An example of the error statistics for relative humidity at 12 UTC is given in Figure 6.19(plots for other hours can be found in Appendix B). In this case, the downscaling isapplied to T2m and Td2m from which Rh2m is diagnosed. Note that no observations ofRh2m enter the analysis. Instead the comparison is done to relative humidity valuescalculated from co-located observations of T2m and Td2m.
The downscaling clearly adds value compared to the UERRA forecasts (red lines in theleft panel) of relative humidity, both in terms of lower bias and lower standard deviation(dashed and solid blue lines in the left panel). This in turn results in a lower RMSE (solidgreen line in right panel). However, the analysis cannot fully compensate for the bias inthe first guess and one can see a small trend also in the bias of the analysis (dashed greenline in the left panel).
6.6.4 Daily minimum temperature

Figure 6.20 Error statistics for the daily minimum temperature. Left: bias (dashed lines) and standarddeviations (solid lines). Right: RMSE and number of observations. Red: UERRA, blue: downscaled, green:analysis.

Time series with bias, standard deviation and RMSE for the daily minimum temperatureis illustrated in Figure 6.20. Here the downscaling results in a slightly lower standarddeviation but at the same time the positive bias is increasing. This is probably related tothe way the downscaling increases the minimum temperatures during winter as seen inFigure 6.3. That modification of the UERRA fields is not beneficial since the analysisincrements in Figure 6.13 shows that the analysis tries to compensate for this bysystematically decreasing the minimum temperatures. The explanation is that thedownscaling tries to mimic the MEPS forecast and it seems as if those are providing toohigh values for the daily minimum temperatures.
Anyway, the total error in terms of the RMSE is at least not worse than that of theoriginal UERRA forecast. Hence at least no harm is done by applying the downscalingalso for this parameter.
Note that there is a trend towards lower RMSE values over time for the first guess. Thistrend is not carried over to the analysis to the same extent, even though it should befurther strengthened by the increase in observations towards the end of the period. Thereason for this has not been investigated.



6.6.5 Daily maximum temperature

Figure 6.21 Error statistics for the daily maximum temperature. Left: bias (dashed lines) and standarddeviations (solid lines). Right: RMSE and number of observations. Red: UERRA, blue: downscaled, green:analysis.

Figure 6.21 shows the error statistic in terms of bias, standard deviation and RMSE forthe daily maximum temperature. The downscaling procedure results in a smallimprovement, both with respect to bias and standard deviation (blue lines in the leftpanel).
The negative bias in the first guess (dashed blue line in left panel) violates the assumptionof zero bias for the optimal interpolation and is not fully eliminated by the analysis(dashed green line in left panel).
Note that the dip in the number of available observation around the 1980s and 1990sseems to be reflected in the RMSE of the analysis (green line in the right panel). Alsonote that the trend towards lower RMSE values that was seen for the daily minimum isnot that pronounced for the daily maximum.
6.6.6 Daily precipitation

Figure 6.22 Error statistics for the daily precipitation. Left: bias (dashed lines) and standard deviations(solid lines). Right: RMSE and number of observations. Red: UERRA, blue: downscaled, green: analysis

Error statistics for the daily precipitation is depicted in Figure 6.22. The downscaling ofthe UERRA forecasts results in lower standard deviation (sold blue line in the left panel)as well as significantly lower bias (dashed blue line in the left panel).
The number of observations regarding the daily precipitation peaks during the 1980s and1990s. This coincides with an improved RMSE for the first guess (solid blue line in rightpanel) but is not seen clearly in the RMSE of the analysis (solid green line in right panel).
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The analysis of daily precipitation shows a nice zero like bias and a distinct added valueon top of the first guess.

6.6.7 Daily snow cover

Figure 6.23 Error statistics for the daily snow cover . Left: bias (dashed lines) and standard deviations (solidlines). Right: RMSE and number of observations. Red: UERRA, blue: downscaled, green: analysis.

Figure 6.23 shows error statistics for the daily snow cover. The downscaling of theUERRA forecasts almost always results in lower standard deviation (sold blue line in theleft panel) as well as a reduction in bias (dashed blue line in the left panel). There is noclear connection between the error in the first guess and the yearly mean snowdepth (not shown), nor with its 95:th percentile. The reason behind the large errorsin the UERRA snow fields during the 1970s has not been studied.
The increase in snow depth observations during the 1980s and 1990s (gray line in rightpanel) is similar to that shown for precipitation. Again there is no clear connectionbetween the number of observations and the RMSE of the analysis (solid green line inright panel).
The analysis of daily snow cover shows almost zero bias and added value from the firstguess, at least during the first and last 15 years. Without the quantile mapping thedownscaling performs less well, especially during the first 15 years.

7 Conclusions
The effect of the downscaling was investigated by comparing its results with the originalUERRA forecasts and the resulting output from the optimal interpolation was evaluatedby means of cross validation and studies of analysis increments. The downscaling turnedout to be adding value to all the variables with one exception. It increased the alreadypositive bias of the UERRA forecasts for the night time two meter temperatures as well asthe daily minimum temperatures.
Suitable parameters for the gridpp optimal interpolation were determined using a gridsearch with cross validation errors as the cost function. It turned out that the exact valuesof these parameters where not critical with respect to the analysis error. Because of thevariable observation network it was however considered beneficial to let the parametersvary during the 58 year long time period.
Results from the study of the analysis increments showed significant systematic errors forthe diurnal temperature and humidity cycles. Minimum temperatures in the downscaledfirst guess were too high and maximum temperatures too low causing the relative



humidity to be too high during the day and too low during the night. These effect whereespecially pronounced during winter daytime and summer nights. The common problemwith NWP models forecasting precipitation too often also showed up here, resulting in apositive bias in the daily precipitation, especially over mountainous regions. The mapswith analysis increments for humidity and precipitation showed some very localizedfeatures (notably along some coastal areas) that probably are associated with stationslocated at sites that do not represent the weather at the scale of the analysis.
The horizontal resolution of the SMHIGridClim data is 2.5 km but this is most probablynot the effective resolution of the data. Even if the down scaling did a perfect job, theMEPS NWP model with its 2.5 km grid, probably have an effective resolution (i.e. thehighest spatial resolution at which there is any meaningful information about the variable)that is about a magnitude coarser. This also means that the results from the evaluation ofthe analysis increments not necessarily show that the UERRA model actually hassystematic errors, e.g. for the min and max temperatures. In order to make such claims,one would have to compare the UERRA output with observations on a scale matching itseffective resolution.
Based on the results from the evaluation of the analysis we conclude that theSMHIGridClim data constitutes a reasonable description of the evolution of the studiedvariables in the Nordic countries (better in Sweden) for the time period 1961 - 2018. Thecross validation results for hourly T2m for example are similar to what was found for theseNorge v2.0 and seNorge 2018 dataset regarding temperature (Lussana et al., 2016 andLussana et al., 2019) as shown in Table 7.1. Note that the error regarding RR for theseNorge data only refers to cases where RR > 0.1 mm while the error for the SMHIdataset includes all cases. Still there is a good fit at the lower end of the intervalsuggesting that they are of similar quality. Also the error figures reported for the datasetFMI_ClimGrid (Aalto et al,, 2016) is of the same magnitude as shown in the same table.Note that it is more difficult to model temperatures and precipitation (rain as well assnow) in Norway (and Sweden) than in Finland where the orography is not aschallenging.

T2m Tnwinter Tnsummer Txwinter Txsummer RR Sn

SMHIGridClim 1.2 -1.5 K 1.4 - 1.8 K 1.0 - 1.2 K ca 2mm 11cm
seNorge2.0/2018 1.0 -1.4 K 2.0 - 4.0K 1.5 - 1.8K 1.0 -2.5 K 1.0 - 1.5K 2 - 6mm NA

FMI_ClimGrid NA 1.0 - 1.7 K 0.5 - 0.8 K 0.4 -1.5mm 6.3 cm

Table 7.1 Mean RMSE for T2m (hourly), Tn, Tx, RR and Sn for three different gridded Nordic datasets.

8 User guidelines
In this section we aim to provide some background information and advice regarding bestpractices with the hope that users of the SMHIGridClim data should be able to make themost out of the data.
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Metadata for SMHIGridClimParameters, [units] Temperature at 2mDaily maximum temperature at 2mDaily minimum temperature at 2mRelative humidity at 2mDaily PrecipitationSnow depthSurface AltitudeLand Area Fraction

[ K ][ K ][ K ][ % ][kg m-2 s-1][ m ][ m ][ % ]
Horisontal resolution 2.5 km
Horisontal coverage The data grid cover the Nordic countries: Sweden, Norway, Finlandand Denmark, as illustrated in figure 2.1.

In gridpoints outside these countries the amount of observations forthe analysis was limited, which results in that some parts of the gridis only represented by the downscaled forecast from UERRA. Checkappendix A on observations for details.
Vertical resolution One level only
Temporal coverage 1961-01-01 to 2018-12-31
Temporal resolution For temperature and relative humidity, the timestamp of the analysesdiffer depending on data period, as a result of the availability ofsurface observations for the analyses.

1961-1967 : analyses at 00, 06, 12, 18 UTC1968-1996: analyses at 00, 03, 06, 09, 12, 15, 18, 21 UTC1997- 2018: analyses at every hour
For the remaining parameters, the resolution is daily at the followinghours.
Precipitation: 06 - 06 UTCSnow depth: 06 UTCMaximum temperature: 18-18 UTCMinimum temperature: 18-18 UTC

Data type and format File format is Netcdf (NETCDF4_CLASSIC data model, file formatHDF5)Metadata follows the convention CF-1.7
Grid Projection: lambert conformal conic

Projection parameters:earth radius = 6371229, false easting = 0, false northing = 0, latitudeof projection origin = 63, longitude of central meridian = 15,longitude of prime meridian = 0, standard parallel = 63
Table 8.1 Data description for SMHIGridClim.



8.1 Data format description
Table 8.1 gives an overview of the dataset, with regards to available parameters, datacoverage and description of the grid. More metadata information can be extracted fromthe netcdf datafiles.
8.2 Interpreting trends
Gridded datasets, without or with information from weather prediction models likeSMHIGridClim, are what we have to rely on in order to map patterns related to climatetrends. However, a word or two of caution is appropriate. Since the dataset is based onforecasts from the UERRA reanalysis topped with surface observations it is easy to viewit as a perfect tool to establish climate trends. However, one should bear in mind that evenif the UERRA reanalysis is based on a frozen model system (no model changes during thehistorical time period) the underlying observation network is not constant. Theobservations change in spatial distribution patterns, numbers and quality. Hence, even ifwe don’t use the UERRA analysis data but the forecasts, they too are affected by thequality of the analysis. The same concern is valid for the observations used in ouranalysis. They also undergo, sometimes dramatic, changes in spatial and temporalpatterns. Moreover, the parameters of the analysis procedure change with time in order tomake the most out of the information from the variable observation network (with theexception of those for the daily precipitation). This could lead to artifacts in the data thatare not to be attributed to climate change. Even if one tries to leave out model variations(like the time dependent gridpp parameters) and just use observations there is still theproblem of stations coming and going. One resolution would be to only use the sites thatare present throughout the whole time period but that would dramatically limit theinformation available for the analysis.
8.3 Variations in data quality
The two meter temperature and relative humidity are available with different timeresolutions during different time periods. Analyses at 00, 06, 12 and 18 UTC are availablefor the entire time period, 1961 - 2018. These are complimented with analyses at 03, 09,15 and 21 UTC from 1968 - 2018. Finally hourly analyses are available from 1997onwards. As a rule of thumb there are more observations available at the 6 hourly cycles,followed by the 3 hourly and then the hourly. Another guideline is that the number ofobservations tends to be lower during the early years and then increase over time.However, there are exceptions and one should check out the time series plots for the crossvalidation data (includes the number of available observations) in Appendix B to makesure that there are not any dramatic changes that may affect the study at hand. Note thatthe difference in time resolution throughout the years can affect things like calculations ofthe daily mean temperature. The data is organized in monthly files and if one usesprograms like cdo to compute daily means these may end up being based on differentnumbers of analyses depending on which year one looks at.
The two meter temperature and relative humidity observations were retrieved both fromnational archives in Norway, Sweden and Finland as well as the MARS archive atECMWF adding information also for other countries covered by the SMHIGridClim grid.However, for the daily minimum and maximum temperatures and daily precipitation onlynational data was available. This means that the quality of the analysis differssignificantly between these three Nordic countries and other areas, especially for the dailydata (the quality of the sub daily data is probably better for the national archivescompared to the MARS archive). Note that the results are probably most reliable forSweden. Here we had best knowledge of the observations and there are less problemswith steep topography and fractal coastlines like in Norway.
The grid covers both water and land areas but the analyses are only to be trusted over landsince the observations used were all made over land surfaces. Data for grid boxes with a
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small fraction of water could still be relevant since the structure functions limit howinformation is spread from land to water areas. One exception is snow cover whichshould be trusted over land only since no information about the ice cover has been takeninto consideration during its analysis. The user is referred to the land-sea mask forfiltering out information given a minimum requirement on the fraction of land in thepoints under investigation.
8.4 Extreme events
Using the SMHIGridClim data for studies of extreme events may be problematic. Thefirst guess for the minimum and maximum temperatures is based on forecasts ofminimum and maximum temperatures during 12 time intervals throughout the day andthat is good. However, these forecasts are from the coarser UERRA model. Thedownscaling is then done for each time interval which is also good. One should howeverbear in mind that the downscaling is static at 00 and 12 UTC and since it is based onlinear regression it tries to make the best fit with the mean error as the target. Hence itwill probably not be very good at catching the extreme situations with inversions and thelike. Similar cautions should be taken when looking at extreme precipitation. Besides thecautions mentioned earlier, another factor enters the equation. The OI analysis assumesthat the error follows a normal distribution but for the high precipitation interval this willno longer hold. There is also the problem with precipitation being an on-off event. Thereis one probability for no precipitation and there is another probability for precipitationthat in turn is associated with the probability regarding its value. Combined, this results inthe precipitation analysis being smeared out and losing information about the high endtail of the distribution. There are plans on doing tailored analyses for extremeprecipitation as mentioned in the next section.

9 Discussion
This section presents discussions on how the current SMHIGridClim data could beimproved by increasing its quality, the area extent or the time period covered.
9.1 Improving the quality of the analysis
The quality of the SMHIGridClim data was shown to be comparable to other Nordicclimatological analysis datasets. However, also some weaknesses were identified.
First the number of observations outside Sweden, Norway and Finland could beincreased. There is more data available from the E-OBS but work need to done in order tomake sure that the measuring times are compatible with what is aimed for inSMHIGridClim. One could also think of redistributing observations that refer to otherintervals than 06-06 for RR and 18-18 for Tn/Tx, e.g. based in hourly information fromthe first guess. How successful such an approach would be need to be investigated.
If the current analysis was to be complemented by another analysis that only covers thetime period of the “remote sensing era” (e.g. 1980 onwards) one could think of improvingthe quality by adding remote sensing observations in terms of satellite and radar data.
The downscaling of the T2m was shown to result in a positive bias during the night andthis is probably due to the MEPS forecasts being biased. Since the downscaling tries tomimic them it too will be biased. This problem could be tackled by finding other highresolution data without such bias. Unfortunately, the new Arctic regional reanalysisCARRA does not cover the entire SMHIGridClim area, otherwise that could have beenan alternative. If the SMHIGridClim data is revisited using data from CERRA (seebelow) one could possibly find a match between CARRA data and MEPS data from alater time period where the T2m bias in MEPS could have been reduced. The analyses of



Td2m, Tn and Tx are also affected by the MEPS bias for T2m and would hence alsobenefit from establishing a better downscaling of T2m. Finally, another alternative wouldbe to skip the downscaling and settle for the 5.5 km resolution in the CERRA Land data.Since the effective resolution is probably much coarser than this it may not impact thequality in any significant way. Adaptations to high resolution topography is alwayspossible as a post processing stage. One could also think of using a dynamic verticaladaptation (possible capturing inversions) depending on the CERRA 3D profiles, likewhat was done in EURO4M.
The downscaling of the daily precipitation worked reasonably well but the analysis didnot take into consideration the non-normal distribution of this parameter. This causesproblems both for cases with zero and high precipitation. As noted before the problemwith the on-off behavior of precipitation could be reduced with a two step approachwhere first the area where there is precipitation is analysed and a second step thenprovides an analysis of how much precipitation there was within the precipitation areafrom the first step. The analysis of extreme precipitation could be improved bytransforming the variable, before the analysis, in order to make it more normallydistributed at the high end, e.g. using a box-cox transformation. After the analysis thevariable is then back-transformed in order to be interpreted as precipitation again.Another thing that could be tried is a quantile mapping, perhaps with a focus on the highprecipitation values.
The analysis of the temperature related entities was used with time varying parameters forthe gridpp OI analysis function. However, it turned out that analysis was ratherinsensitive to the exact values of these parameters. Since the changes in those parametersstill could show up when looking at trends in the temperature data one could considerredoing the analysis with a fixed set of parameters tuned to provide the best possibleperformance during the entire time period.

10 Extension of SMHIGridClim
Analysis with gridpp depends on that there is both reanalysis fields for the first guess andsurface observations with good quality available. Thus, an extension of the dataset withregards to time period, grid area and/or analyzed variables requires satisfying input dataof both types. As an alternative for some variables it is more relevant to complementSMHIGridClim data with other data sources, it is beneficial if they are or can betransformed into the same grid area and resolution. Below are a number of alternativesand perspectives of future work.
10.1 Additional variables
The present dataset includes near-surface air temperature and near-surface relativehumidity (1-6 hourly resolution), as well as daily near-surface maximum and minimumtemperatures, precipitation and snow depth. Examples of other parameters of interest arewind, solar radiation and more detailed data for precipitation and its extremes. There arealso an interest in data for other non-meteorological parameters such as ground frost, andhydrological/oceanographical data, to calculate climate indices.
Wind is a difficult variable despite the fact that there is both forecast fields andobservations available, since wind observations often are only representative for the verylocal conditions where the stations are located. Here it is probably better to use forecastfields, like in the EURO4M reanalysis project (precursor to UERRA) where the wind wasdownscaled semi-dynamically from 22 km to 5.5 km horizontal resolution and a similarapproach could be used here as well.
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For solar radiation and clouds, there are too few surface observations to process withgridpp. Thus it is more relevant to have a methodology based on satellite data. At SMHIthe STRÅNG model is available with data for northern Europe (covering the years 1999-present), where work is currently being done to improve the cloud modeling byimplementing optical depth from satellite observations. There are also other solarradiation datasets available, e.g. based on satellite or reanalysis data. However, theirhorizontal resolution is coarser than the 2.5 km used for SMHIGridClim.
Non-meteorological parameters such as ground frost or hydrological or oceanographicalparameters, needs to be provided from other models, directly or by processing ofGridClim variables.
Instead of trying to improve a single analysis of daily precipitation one could also think ofmaking an analysis dedicated to extreme precipitation based on variable transformations.Relaxing the requirement of providing a good analysis for all precipitation amounts itwould probably be easier to find a good solution for the extreme case separately.
10.2 Extended time period
To extend the dataset beyond 2018, another first guess than downscaling UERRA-HARMONIE needs to be used, as UERRA-HARMONIE ends in July 2019. PresentlyCERRA/CERRA-Land is the strongest candidate, that starts in 1984 and extends to nearreal time.
Another possibility is to extend with data from the operational version of GriPP analysisthat is being setup at SMHI as successor to the current MESAN system. The operationalgridpp analysis will be performed on the MEPS grid and hence it will overlap theSMHIGridClim grid with the same projection and resolution. Possible drawbacks are thatthe gridpp OI-parameters as well as the underlying observation network will differmaking it more difficult to investigate climate trends.
Data could also be extended backwards, using ERA-5 that starts back in 1950. Howeveras there is already a lack of observations in the early 1960 where SMHIGridClim starts, itis uncertain if there are enough observations for the analysis to bring extra value.
10.3 Extended data region
The current version of SMHIGridClim covers a Nordic region as shown in Figure 2.1.The main difficulty regards to spatial coverage was to access observations within the timeavailable for the project. In any future reanalysis it should be considered to extend thedata region to widen the applicability of data. Fore instance as input to hydrological(covering catchment areas) and oceanographic models (covering relavant sea areas), incombination with additional parameters needed. However, in order to be of value foroceanographic applications remote sensing data is probably vital. In the current analysis,(almost) no information is added to areas covered by sea.
The method used for the first guess with downscaling using MEPS forecast is limited bythe smaller area covered by MEPS, but on the other hand if CERRA-Land is used thehorizontal resolution of 5.5 km might be sufficient.
More observations can be retrieved from the E-obs dataset from KNMI, where a goodcontact is already established. It would be of value to have a closer collaboration as welearned in the current project that good knowledge about the observation dataset arecritical. Furthermore, if data is to be extended in time and geographical area, it would berelevant to look for collaborative efforts among for instance the Nordic institutes.
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SMHI Publications 
 
SMHI publishes seven report series. Three of these, the R-series, are intended for international 
readers and are in most cases written in English. For the others the Swedish language is 
used. 
 
Names of the Series Published since 
RMK (Report Meteorology and Climatology) 1974 
RH (Report Hydrology) 1990 
RO (Report Oceanography) 1986 
METEOROLOGI 1985 
HYDROLOGI 1985 
OCEANOGRAFI 1985 
KLIMATOLOGI 2009 
 
Earlier issues published in serie RMK

1 Thompson, T. Udin, I. and Omstedt, A. 
(1974)  
Sea surface temperatures in waters 
surrounding Sweden 

2 Bodin, S. (1974)  
Development on an unsteady atmospheric 
boundary layer model 

3 Moen, L. (1975)  
A multi-level quasi-geostrophic model for 
short range weather predictions 

4 Holmström, I. (1976)  
Optimization of atmospheric models 

5 Collins, W.G. (1976)  
A parameterization model for calculation of 
vertical fluxes of momentum due to terrain 
induced gravity waves 

6 Nyberg, A. (1976)  
On transport of sulphur over the North 
Atlantic 

7 Lundqvist, J-E.  Udin, I. (1977)  
Ice accretion on ships with special emphasis 
on Baltic conditions 

8 Eriksson, B. (1977) 
Den dagliga och årliga variationen av 
temperatur, fuktighet och vindhastighet vid 
några orter i Sverige 

 

9 Holmström, I. and Stokes, J. (1978)  
Statistical forecasting of sea level changes in 
the Baltic 

10 Omstedt, A. and Sahlberg, J. (1978)  
Some results from a joint Swedish-Finnish 
sea ice experiment, March, 1977 

11 Haag, T. (1978) 
Byggnadsindustrins väderberoende, 
seminarieuppsats i företagsekonomi, B-nivå 

12 Eriksson, B. (1978) 
Vegetationsperioden i Sverige beräknad från 
temperaturobservationer 

13 Bodin, S. (1979) 
En numerisk prognosmodell för det 
atmosfäriska gränsskiktet, grundad på den 
turbulenta energiekvationen 

14 Eriksson, B. (1979) 
Temperaturfluktuationer under senaste 100 
åren 

15 Udin, I. och Mattisson, I. (1979) 
Havsis- och snöinformation ur 
datorbearbetade satellitdata - en modellstudie 

16 Eriksson, B. (1979) 
Statistisk analys av nederbördsdata. Del I. 
Arealnederbörd 

 



 

 

17 Eriksson, B. (1980) 
Statistisk analys av nederbördsdata. Del II. 
Frekvensanalys av månadsnederbörd 

18 Eriksson, B. (1980) 
Årsmedelvärden (1931-60) av nederbörd, 
avdunstning och avrinning 

19 Omstedt, A. (1980)  
A sensitivity analysis of steady, free floating 
ice 

20 Persson, C. och Omstedt, G. (1980) 
En modell för beräkning av luftföroreningars 
spridning och deposition på mesoskala. 

21 Jansson, D. (1980) 
Studier av temperaturinversioner och vertikal 
vindskjuvning vid Sundsvall-Härnösands 
flygplats 

22 Sahlberg, J. and Törnevik, H. (1980)  
A study of large scale cooling in the Bay of 
Bothnia 

23 Ericson, K. and Hårsmar, P.-O. (1980)  
Boundary layer measurements at Klockrike 
Oct 1977 

24 Bringfelt, B. (1980)  
A comparison of forest evapotranspiration 
determined by some independent methods 

25 Bodin, S. and Fredriksson, U. (1980)  
Uncertainty in wind forecasting for wind 
power networks 

26 Eriksson, B. (1980) 
Graddagsstatistik för Sverige 

27 Eriksson, B.(1981) 
Statistisk analys av nederbördsdata. Del III. 
200-åriga nederbördsserier 

28 Eriksson, B. (1981) 
Den "potentiella" evapotranspirationen i 
Sverige 

29 Pershagen, H. (1981) 
Maximisnödjup i Sverige  
(perioden 1905-70) 

30 Lönnqvist, O. (1981) 
Nederbördsstatistik med praktiska 
tillämpningar 
(Precipitation statistics with practical 
applications.) 

31 Melgarejo, J.W. (1981)  
Similarity theory and resistance laws for the 
atmospheric boundary layer 

32 Liljas, E. (1981) 
Analys av moln och nederbörd genom  
automatisk klassning av AVHRR-data 

33 Ericson, K. (1982)  
Atmospheric boundary layer field 
experiment in Sweden 1980, GOTEX II,  
part I 

34 Schoeffler, P. (1982)  
Dissipation, dispersion and stability of 
numerical schemes for advection and 
diffusion 

35 Undén, P. (1982)  
The Swedish Limited Area Model. Part A. 
Formulation 

36 Bringfelt, B. (1982)  
A forest evapotranspiration model using 
synoptic data 

37 Omstedt, G. (1982) 
Spridning av luftförorening från skorsten i 
konvektiva gränsskikt 

38 Törnevik, H. (1982)  
An aerobiological model for operational 
forecasts of pollen concentration in the air 

39 Eriksson, B. (1982) 
Data rörande Sveriges temperaturklimat. 

40 Omstedt, G. (1984)  
An operational air pollution model using 
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