
1. Introduction
The circulation and hydrographic properties of the river–estuary–shelf (RES) waters off the Pearl River 
Estuary (PRE, Figure 1) are highly variable in space and time due to multi-forcing of tides, winds, and buoy-
ancy from river discharge (Liu & Gan, 2020; Zu & Gan, 2015). These RES waters are shallower than 50 m 
with complex bathymetry and are driven by strong wind and tidal forcing as well as remote forcing from 
the neighboring basin circulation in the northern South China Sea (NSCS, Figure 1). The PRE bathymetry 
is characterized by a wide shallow western bank and two relatively deep navigation channels in the eastern 
segment. Hong Kong Waters are characterized as a coastal embayment that is influenced by the waters from 
the PRE to the west, from Mirs Bay to the east, and from the continental shelf off Hong Kong to the south. 
The annually averaged river discharge from the Pearl River to the continental shelf is ∼10,000 m3 s−1 (Zu & 
Gan, 2015). These buoyant waters rush out of the estuary and form a notable buoyant plume over the shelf. 
As a result, the interaction between the plume and the wind-driven shelf circulation changes the pattern 
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and intensity of the coastal circulation (Gan, Li, et al., 2009), which modulates the intrusion of the shelf 
water into the PRE. The river plume of the PRE shows complex and diverse structures under the influence 
of wind and tide. The enhanced mixing by tide retards the horizontal spreading process and increases the 
plume thickness, while the plume-induced stratification modifies the tidal current in turn. The PRE cir-
culation interacting with the shelf circulation shows a distinct seasonal variation caused by the monsoon. 
Correspondingly, there is upwelling/downwelling of coastal waters in summer/winter along the PRE coast 
(Gan, Cheung, et al., 2009; Ji et al., 2011; Sheng et al., 2010), which increases the complexity of successfully 
forecasting the RES waters around Hong Kong.

The circulation around the PRE in response to tides, winds, and buoyancy discharge has been intensively 
investigated by various numerical studies (Gan et al., 2016; Gan, Li, et al., 2009; Ji et al., 2011; Lai et al., 2021; 
Luo et al., 2012; Ou et al., 2007; Zu & Gan, 2009, 2015). However, simulating the PRE waters has large un-
certainties mainly due to complex hydrodynamics induced by the highly variable multi-forcing factors of 
winds, river discharge, and tides over the RES system. The challenges in the previous studies come either 
from spatiotemporally limited observations or from deficiencies in model physics such as sub-grid-scale 
parameterization of subscale processes (Liu et al., 2013). Therefore, combining model and observations is 
expected to be potentially more accurate than either model or observations used alone (Gregg et al., 2009).

There are many examples of developing coastal data assimilation (DA) techniques based on the Variation-
al or Kalman Filter method (Moore et al., 2011), which have been widely used in a coastal area such as 
the New York Bight (Zhang et al., 2010), the Mediterranean (Korres et al., 2007; Teruzzi et al., 2018), the 
North/Baltic Sea (Liu et al., 2013, 2017), the California coast (Axell & Liu, 2016; Broquet et al., 2009; Li 
et al., 2015; Moore et al., 2011), the Gulf of Mexico (Counillon & Bertino, 2009), the Caribbean Sea (Powell 
et al., 2008), and NSCS (Shu et al., 2009; Xie et al., 2011). As a popular assimilation method, the ensemble 
optimal interpolation (EnOI) approach has been well applied in ocean researches, which uses a stationary 
ensemble composed of model states as a square root representation of the covariance matrix and it also 
does not require solving the adjoint equations of the dynamical system (Oke et al., 2008). As a consequence, 
this method is computationally cheap and is still 3-dimensional and multivariate. Furthermore, the effects 
of friction in RES models tend to damp down this mesoscale chaotic behavior. Fine-scale features such as 
eddy shedding in the chaotic behavior of upwelling and river plume filaments may be present. The water 
state in the RES system is more sensitive to vibrant dynamics due to the highly variable forcing of tide, wind, 
and buoyant discharge. As a result, the DA adjustment of the model simulation can be quickly dissipated 
by the swift changing wind- and tide-driven currents. Therefore, it is a challenge to capture the prediction 
uncertainty and extract reasonable observation information for a DA application in the RES dynamics wa-
ters. With sparse profile observations that may poorly resolve high-frequencies and spatial variations of 
these currents, the developed ‘convention’ DA scheme in the RES system (Figure 1) is a testbed for how to 
accommodate the dynamic characteristics with the improved DA skill and further benefits to other similar 
forecast systems.

Figure 1. (a) The model domain, bathymetry (unit: m) and the isobaths (color lines) in the Pearl River Estuary and (b) the northern South China Sea (Liu & 
Gan, 2020) of the China Sea Multi-Scale Ocean Modeling System.
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This study objectively examines the DA system for the estuary–shelf model off Hong Kong to forecast the 
highly variable coastal waters. Based on the robust implementation of ensemble DA using the EnOI al-
gorithm (Evensen,  2003) for forecasting the dynamics of coastal waters, we assess the DA performance 
(against observations) based on key metrics such as the water exchange and the distribution and variability 
of both temperature and salinity (T/S) in the RES waters. We characterize the abilities of the prediction sys-
tem, with and without DA, to reproduce the observed water mass distribution as inferred from the sampled 
stations. This includes an evaluation of the influences of using DA in data-sparse dynamic coastal waters.

2. Ocean Model and Assimilation Method
2.1. The Coupled Estuary-Shelf Circulation Model

The Regional Ocean Modeling System (ROMS) (Shchepetkin & McWilliams, 2005) is used to simulate the 
estuarine and shelf circulations in the China Sea Multi-Scale Ocean Modeling System (CMOMS) which is 
composed of three simulations (Figure 1a). The large-scale circulations in the Northwestern Pacific Ocean 
and the South China Sea are simulated with a horizontal resolution of ∼10 km (Gan et al., 2016). The hori-
zontal resolution in the NSCS is downscaled to a finer resolution (∼3 km) and then further downscaled to 
the model domain neighboring the PRE (Figure 1b). The active open boundary condition by Liu and Gan 
(2016, 2020) is used to interlink these simulations. Curvilinear orthogonal grids are used to implement a 
higher horizontal resolution (200–300 m) in the estuary and coastal regions. The grid size is gradually in-
creased to ∼1 km over the shelf at the southern boundary of this PRE simulation. The bottom topography 
is obtained by combining water depth data from the Hong Kong Maritime Department and the digitized 
high-resolution navigation charts published by the China Maritime Safety Administration. The model has 
30 terrain-following vertical levels (Song & Haidvogel, 1994) and adopts higher resolutions (<0.2 m) in both 
the surface and bottom boundary layers to better resolve the dynamics inside these boundary layers.

The model is driven by the atmospheric forcing from the fifth generation of ECMWF atmospheric reanal-
ysis (ERA5; Copernicus Climate Change Service (C3S), 2017). A time-dependent river discharge from the 
upstream hydrographic monitoring station at Gaoyao that is operated by the Ministry of Water Resources 
of China provides the buoyancy forcing from the estuaries. The impact from this variable river discharge 
is used to force the currents but ignored in the simulations to shed light on the roles of wind and tides on 
the plumes. Eight major tide components (M2, K1, S2, O1, N2, P1, K2, and Q1), which are extracted from 
the tidal assimilation model (Zu et al., 2008), have been used to implement the tidal forcing. The level-2.5 
turbulent closure scheme from Mellor and Yamada's (1982) is used to parameterize the vertical mixing. A 
detailed description of model implementation and validation is described in Liu and Gan (2020).

2.2. Ensemble Optimal Interpolation (EnOI)

The EnOI algorithm has been applied previously in reanalysis applications and short-time forecasts of both 
open sea and coastal regions (Counillon & Bertino, 2009; Liu et al., 2014, 2017; Oke et al., 2008). EnOI 
computes an “optimal” oceanic state at a given time using observations, the predicted model state, and 
assumptions on their respectively unbiased error distributions. The relationship between them can be ex-
pressed as follows:

    ,a f fx x K y Hx (1)
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Here x is the model state vector which includes temperature, salinity, and current velocity. The superscripts 
a and f refer to “analysis” and “forecast”, respectively. E y is the observation vector. K is the so-called Kal-
man gain that weights the observational information based on the model and observation error covariance 
matrices, P and R, respectively. H is the observation operator that maps the model state onto the observa-
tion space, which searches the model grid closest to the observation position in this study. The subscript 
T denotes the transpose of a matrix.  E A A A is an ensemble perturbation matrix. Here E A and E A are the 
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ensembles of model state vectors and the ensemble mean, respectively. N is the number of the ensemble 
samples, and the scaling factor   0,1E  is introduced to tune the covariance of the ensemble perturbations 
to capture the variability of model parameters. After a sensitivity analysis like Liu et al. (2013), the factor E  
with a value of 0.3 is used in all assimilation experiments. The ensemble of the model state vector is critical 
to the performance of an EnOI system. The scales of variability and features represented by the ensemble 
perturbations should resemble the dominant errors of the model (Oke et al., 2008). To evaluate the influ-
ence of the model errors at different scales on the EnOI analysis in the PRE simulations, two ensembles of 
model state vectors are used in this study. The samples were taken from the hindcast simulations without 
DA in both July 2014 and July 2015. The first ensemble uses daily mean fields of the model state and an-
other ensemble uses the model snapshots at the time of 12:00 and 24:00, respectively. Hence, a total of 60 
and 120 model samples are adopted for those two ensembles, respectively. The daily samples can catch the 
model variability higher than 24 hr, but the snapshot samples probably hold the information of model var-
iability on a temporal scale shorter than 24 hr. Other “sophisticated” sample ensembles are of interested to 
be tested, but this is beyond the scope of this study.

As one of the most important designs in a DA system, the used observation errors directly affect the final as-
similation results. For simplification, observation errors are assumed to be uncorrelated in this study. Thus, 
observation error covariance, R, is a diagonal matrix in which the diagonal elements are the observation er-
ror variances depended on the assimilated observation types and locations. Usually, when assimilating the 
profile of T/S, the observation errors are decreased from the surface to under the thermocline as proposed 
by Stammer et al. (2002) and used in Xie and Zhu (2010). Unresolved scales or processes in the RES observa-
tion are more complex relative to those in the open sea, which makes the representative error larger. Thus, 
compared to Xie and Zhu (2010), we adopted a larger observation error of T/S and calculated the standard 
deviations of observation errors of T/S as following equations,


 

    
 

temp 0.05 0.45 exp ,
500

d
 (4)


 

    
 

salt 0.3 0.2 exp ,
125

d
 (5)

where d represents the water depth (unit: m) at the observation position.

Localization is a crucial factor for EnOI to reduce the sampling error that arises from the use of small ensem-
bles (Liu et al., 2013). With a quasi-Gaussian function given by Formula 4.10 in Gaspari and Cohn (1999), 
we only localized the model error covariance in the horizontal direction. Based on the statistic analysis of 
the sample ensembles (Figure 3), we adopted a uniform correlation scale of 20 km (Lai et al., 2021). Fur-
thermore, we have selected a window of 24-hr in all assimilation experiments. All the observations collected 
within 24 hr are used to yield the “new” initial condition for the following assimilation cycle and these 
observations are assumed to be measured simultaneously. When observations become available at a certain 
time, the optimal state variables are calculated by the EnOI Equations, which are used as the new initial 
conditions of the next simulation cycle.

3. Observations and Experiments Designed
3.1. Observations in July 2015

The in situ data used in this study were extracted from the deployed Conductivity-Temperature-Pressure 
(CTD) profiler during a cruise conducted in July 2015. The temporal and spatial distribution of observations 
is shown in Figure 2. These observations were mainly located in the RES waters around Hong Kong. The 
cruise started on July 5th in the PRE and then sailed over the shelf from west to east. The cruise also reached 
Mirs Bay and ended in Hong Kong on July 30th. We established 152 stations in the estuary, Hong Kong Wa-
ters, and over the shelf. The horizontal distribution of these stations is shown in Figure 2a. Those sampling 
stations are over the 50-m to 10-m isobaths with a 5-m interval to better reveal the cross-shore exchanges of 
waters in the RES system. The maximum depths of CTD profiles are almost identical to the maximum water 
depths at the observational positions (Figure 2b). A CTD profiler was deployed to retrieve the hydrographic 
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properties (T/S) of the water column over 12 transects over the shelf, except for four days (on July 12th, 
18th, 22nd, and 24th) without observation due to adverse weather conditions (Figure 2c).

In order to reduce the number of the actually assimilated observations for every model layer, we identify 
all measurements of every profile within a model layer and compute the average value of all these meas-
urements to produce one super-observation. Furthermore, we have also removed T/S measurements that 
differed from model results more than a given threshold of 7 °C/7 g/kg. During the experiment period, there 
were 200 profiles in total collected in the PRE domain with the maximum number of profiles (measurement 
records) of 25(1,500), for both T/S, on July 23rd (July 24th) as shown in Figure 2c.

3.2. Experimental Runs and Evaluation Metrics

Given important issues of an EnOI DA system (e.g., the ensemble construction and assimilation window), 
a set of simulation experiments were conducted to assess the impact of DA on the RES forecast (Table 1). 

Figure 2. (a) Station locations are color-coded by the date of their occupation and the model domain in Cartesian 
coordinates. Black lines indicate sections T1 and T2 used in the analysis of Section 4.4; (b) the horizontal coverage 
and max depth (colorbar) of the observed Conductivity-Temperature-Pressure profiles; (c) the daily number of profiles 
(bars) and observations (blue line) for temperature (salinity), respectively.
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The four experiments cover the field survey period from July 6 to July 30, 2015. A control run without data 
assimilation (NoDA) is used to identify the model uncertainties and as a benchmark to compare with the 
assimilation experiments. In other runs, we assimilated the observations into ROMS at 0000 UTC (t0), and 
then the model ran a 1-day simulation (t0 + 24 h) to the next DA time and repeated this assimilation process. 
To evaluate the influences of the assimilation window on model forecasts and the effects of assimilating 
CTD data, we adopted two assimilation window schemes by shifting the assimilation time position in the 
assimilation window. Using the daily average sample ensemble, two experiments named DA01 and DA02 
assimilate the CTD observations with a different assimilation window every day. At each assimilation time, 
DA01 digested the observations collected in the previous 12 hr (t0-12h) and the following 12 hr (t0+12h). 
DA02 used observations collected in the previous 24 hr (t0-24h). Furthermore, to study the influence of the 
sample scheme on the forecast results, the last assimilation run named DA03 adopts the snapshot ensemble 
which is constituted of the instantaneous states of the model and uses the same assimilation window as 
in DA02. It also should be noticed that the ensemble members in both DA01 and DA02 are 60, but 120 for 
DA03.

The 24-hourly forecast from four runs was assessed with all observations of T/S from the cruise in 2015 July 
(Table 1). We analyzed how much the DA could affect the prediction skill of T/S. To assess the experiment 
results, the daily averaged bias, root mean square error (RMSE), and normalized RMSE were calculated by 
the following formula:

   1
1bias ,N

i ii y Hx
N

 (6)
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where iE y  and iE x  are the thE i  observation and corresponding simulation fields. E N is the number of observations 
during the evaluation period and H is the observation operator. The overbar indicates the average.

4. Results
4.1. Statistical Characteristics of the Ensemble and the Observations

Using the ensemble-based background error covariances, it is possible to derive the correlation structures 
from point measurement taken within the model domain. These spatial correlation structures give an in-
dication of the influence region of observations for each location. An observation of surface temperature 
at the Pearl River results in a correlation structure (Figure 3a) that suggests this observation spreads infor-
mation of the surface temperature to both, central and coastal regions surrounding this point. A surface 
observation at the mouth of the PRE (Figure 3b) yields information not only on the surrounding waters but 
also on many nearby shallow coastal locations. A surface observation at the shelf (Figures 3c and 3d) influ-
ences the surrounding waters in the up/downstream region. These typical spatial structures are contained 
in the background error covariance defined by the ensemble as Equation 3, and finally are used to spread 
the observational information to regions where no observations exist.

Experiment
Elements of 

ensemble
Ensemble 

size
Assimilated 

observation types
Time window of 

assimilated observations
Obs. time window 

for validation

DA01 Daily mean fields 60 T/S Profiles (t0-12h, t0+12h) (t0, t0+24h)

DA02 Daily mean fields 60 T/S profiles (t0-24h, t0) (t0, t0+24h)

DA03 Snapshots 120 T/S profiles (t0-24h, t0) (t0, t0+24h)

NoDA - - No observation - (t0, t0+24h)

Table 1 
The Setup of the Experiments in This Study, t0 Represents the Moment of Assimilation Time



Journal of Geophysical Research: Oceans

LIU ET AL.

10.1029/2020JC017043

7 of 19

A temperature observation taken in the Pearl River has a footprint that positively correlates to most of the 
surrounding waters and negatively correlates to the shelf observations (Figures 3a and 3b). The opposite is 
the case for the observations from the shelf waters. The correlation structure depicted in Figures 3c and 3d 
suggests that an observation on the shelf has a relatively larger influence on the area along the currents 
than cross the currents. Further, an interesting phenomenon is the upstream shelf regions have a stronger 
correlation with the Pearl River waters than the downstream shelf regions (Figures 3c and 3d). These fea-
tures make sense because this coastal system is affected by both the weather patterns and topography, which 
strongly influence the baroclinic dynamics (Trodahl & Lsachsen, 2018).

Comparing the sample ensemble to observations gives an indication of the distribution of the adjusted 
magnitude of DA from the EnOI equations. We calculated the error variances of the T/S from the snapshot 
ensemble in DA03 at the surface and bottom by Equation 3. As shown in Figure 4, the error variances of 
the ensemble are larger in surface water than those in bottom water. Regarding the surface temperature, 
the error variances at the western shelf waters are evidently larger than those around Hong Kong Island. 
The biggest error variance of surface temperature appears at western shelf waters, which is larger than 1.21 
(°C)2. However, the bottom temperature of the sample ensemble has different features. The bottom temper-
ature of the sample has greater error variances in the western coastal waters and the Mirs Bay relative to that 
in other regions. Further, this ensemble has smaller error variances at the offshore shelf compared to that 
at other regions. Moreover, the sample temperature of the Pearl River has similar errors at both surface and 
bottom waters. Considering the surface salinity, the larger error variances occur at the western shelf and 
Pearl River compared to other regions. In general, the bottom salinity of the sample ensemble has smaller 
error variances relative to the surface salinity. However, the larger error variances of bottom salinity are still 
at the Pearl River. The feature shows salinity prediction is more challenging at the surface relative to at the 
bottom.

4.2. Quantitative Evaluation for Temperature and Salinity

To enable a quantitative validation of the impact of assimilating T/S profiles on the forecast, the forecast 
errors of the T/S from four experiments were calculated against in-situ observations. This calculation has 

Figure 3. An example of the ensemble-based cross-correlation structure for a temperature observation in the surface cell for (a) Pearl River, (b) Pearl River 
Estuary, (c) shelf upstream region, and (d) shelf downstream region. Dark dots show the observation position and circles indicate the range of a 20-km 
influenced radius.
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been performed prior to the assimilation and the errors are equivalent to forecast errors rather than analysis 
errors.

Figures 5a and 5b show the evolution of the T/S NRMSE simulated in experiments. This temperature NRM-
SE is generally decreased with the simulation evolution. As shown in Figure 5a, the NoDA has NRMSE 
beyond 1.0 during 8th–9th July and on 13th July. This indicates the model has an obvious deviation from 
the observations. However, the DA improved the model simulations for the stratification of T/S during these 
days (Figure 8). The maximum NRMSE for temperature in NoDA, 2.25, was decreased by 0.74–1.15 in the 
assimilation runs on July 9th. Although all assimilation experiments produced a better temperature rela-
tive to NoDA, their improvements have evidently different features. Overall, the NRMSEs for temperature 
were reduced by 13.9%–27.8% (from 0.72 for NoDA to 0.52–0.62 for the assimilation runs). The NRMSEs of 
temperature from the assimilation runs have similar variability over time. In terms of salinity, the overall 
NRMSEs of the assimilation runs were reduced by 4.6%–15.4% compared to that for NoDA (0.65). Therefore, 
the DA salinity has a smaller improvement than the DA temperature. In addition, the T/S improvements 
are not evenly distributed over time. On some days, the assimilation results are even worse than NoDA. 
The predictability improvements of the T/S in the DA runs are not always identical. As an example, DA 
improved temperature and degraded salinity on July 13th, respectively.

The overall NRMSE for T/S as a function of depth is shown in Figures 5c and 5d. The statistics are based 
on the comparison with all available profiles over the entire experiment period. First, the predicted values 
were interpolated to the observation positions with the observation operator and then the prediction mean 
bias was calculated by Equation 6. The comparisons in Figures 5c and 5d show that the temperature error in 
all the DA runs is smaller than that in NoDA. The NRMSEs of temperature were reduced at all depths. As a 
result, the overall RMSEs for temperature were reduced by 9.8%–23.5% (from 1.32 °C for NoDA to 1.01, 1.14, 
and 1.19 °C for DA01, DA02, and DA03, respectively). The better prediction of temperature in the DA runs 
is due to the reduction of both warm and cold biases (Figures 9 and 10). In waters shallower than 50 m, the 
global NRMSE of salinity decreases with increasing depth and the NRMSE of NoDA was reduced in the DA 
runs. However, in waters deeper than 50 m, the model has better performance than the DA runs. In general, 

Figure 4. The error variances of the temperature (left panel; unit: (°C)2) and salinity (right panel; unit: (g/kg)2) from the snapshot ensemble in DA03 in the 
surface (a, b) and bottom (c, d) waters at the observation stations.
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the salinity errors were reduced from 2.36 g/kg (NoDA) to 2.03 g/kg (DA01), 2.25 g/kg (DA02), and 2.26 g/
kg (DA03), i.e., 4.2%–14.0% RMSEs have been reduced for salinity in the assimilation runs. Moreover, the 
NRMSE values exceeding 1.0 in Figure 5d indicate NoDA has low predictability for temperature in waters 
deeper than 40 m and salinity in waters less than 10 m deep, respectively.

4.3. Sensitivity Analysis of the Assimilation Configurations

The assimilation window can largely affect the analysis quality by controlling the available observations 
used for analysis. We assess the impact of the assimilation window on the PRE forecast. Two assimilation 
window schemes were designed for DA01 and DA02, respectively. The results show that DA01 has better 
performance for the T/S forecast compared to DA02 (see Figure 5). In general, the T/S RMSEs in DA01 were 
reduced by 11.4% and 9.8% relative to those in DA02 (Figure 6), respectively. Further, both errors of T/S are 
smaller in DA01 than those in DA02 at all depths and times. The reason is that the observation information 

Figure 5. Daily mean NRMSE of temperature (a) and salinity (b) from forecast results relative to observations, and global NRMSE of temperature (c) and 
salinity (d) from forecast results against observations.
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entering the analysis processes for DA01 and DA02 is different although the length of the assimilation win-
dow is the same. First, the number of observations used for the analysis might be different because of the 
nonuniform distribution of observations over time. Second, to a first–half–day forecast of an assimilation 
cycle, DA01 could be constrained by the corresponding time-consistent observations and DA02 couldn't 
obtain any help from the time-consistent observations. In addition, the DA adjustment in a first–half–day 
influences the corresponding second–half–day forecast in the DA01 run. Third, to the same daily forecast, 
the second–half window for DA01 is closer to the assimilation time than the first–half window for DA02. 
Therefore, the observed values used in the second–half window of DA01 more accurately represent the true 
ocean state at the assimilation time relative to those in the first–half window of DA02. The comparison 
between DA01 and DA02 suggests that the choice of the observation time window for a DA system is very 
important to the prediction with DA of a region like the PRE where the T/S has large variability because of 
the strong tide and monsoon.

Figure 6. RMSE of temperature (left panel; unit: °C) and salinity (right panel; unit: g/kg) from NoDA relative to the CTD observations in July 2015 and the 
RMSE adjustments in DA01, DA02, and DA03 relative to NoDA.
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There are two schemes used here for choosing the sample ensemble based on different model error as-
sumptions. To quantify the sensitivity of the forecast quality to the sample ensemble in the DA system, the 
RMSEs of T/S from the forecast against the observations are presented in Figure 6. The statistics presented 
are based on the comparisons with in-situ observations at all depths in July 2015. This comparison is used 
to show how much the model uncertainty in spatial scale is sensitive to the sampling scheme. The tempera-
ture from NoDA has maximum uncertainty in the Pearl River and minimum uncertainty in the Hong Kong 
Waters (Figure 6a). Over the shelf, larger and smaller errors of temperature are generally distributed in the 
downstream and upstream regions, respectively. To the salinity, the model has difficulty in reproducing 
good simulation for the PRE water. There are strong buoyancy exchanges between the PRE and the adja-
cent shelf waters. For example, although the model can well reproduce the shelf salinity and capture the 
main salinity feature of the PRE, it is hard to accurately simulate the salinity front caused by the outflowing 
low-salinity water from the PRE and the intruding salty water from the shelf (Figure 8). The comparisons 
in Figure 6 indicate that NoDA and the assimilation runs are comparable in most regions. In the PRE, DA 
significantly improved both T/S and the salinity variation seems more sensitive to the snapshot sample en-
semble (also see Figure 9). For instance, the forecast errors in the PRE were reduced by 1.0 °C and 3.0 g/kg 
in the assimilation runs compared to those in NoDA. For the shelf water, DA03 degraded the temperature 
forecast at the southern boundary of the study region. The comparison between DA02 and DA03 shows the 
daily samples have advantages in decreasing the temperature errors in both the shelf and PRE waters and 
disadvantages in reducing the salinity errors in the waters around Hong Kong island relative to the snapshot 
samples (Figure 6).

4.4. The Assimilation Impact on the Prediction of Hong Kong Waters

In summer, buoyant waters from the PRE are mainly transported by a strong southwesterly monsoon. There 
is an exchange between the buoyant waters from the PRE and saltier waters from the shelf by the coastal 
current and tide. This exchange directly influences the shelf water properties (e.g., salinity and density). 
Thus, it is meaningful to verify the transport process of waters from the PRE and the ocean parameter's 
variation caused by DA. We present the volume transport simulated by NoDA at the surface and bottom as 
well as the vertically averaged transport in Figure 7. The volume difference transported in DA02 and NoDA 
is also shown in Figure 7. The NoDA results show that the coastal waters intruded into the PRE along the 
western coast of the PRE. The intruded water weakened and exited the estuary along the east coast of the 
estuary. Meanwhile, a notable upwelling jet, which is intensified in the lee of Hong Kong (Liu et al., 2018), is 
observed over the shelf. Water transport mainly happens on the shelf. The water transports are significantly 
larger in the downstream shelf and the surface than those in the upstream shelf and the bottom, respec-
tively. Figure 7 shows water was gradually transported northward along the offshore from the west shelf to 
the east shelf. The transport variation caused by DA is mainly located on the western and southern shelf. 
Evidently, the decreased transport by DA at the entrance of the estuary weakened the saltwater intrusion 
and freshwater outflux. On the contrary, the increased transport is found further offshore over the shelf with 
the largest increment in the westernmost upstream Waters.

To further evaluate the variation of water exchange in the PRE, we compare the forecasted T/S along two 
cross-sections (T1 and T2, Figure 2) with the corresponding observations in Figures 8 and 9. The obser-
vations along T1 were collected from the PRE to the shelf including the PRE discharge region. Therefore, 
the observations are good to estimate the T/S variation in the PRE. At T1, it is observed that water flowed 
out of the PRE in the upper layer, which shows high temperature and low salinity. As a result, a salinity 
front and stratification were formed with the high salinity water from the shelf. NoDA well captured these 
characteristics. However, it overestimated the salinity of the PRE waters. This resulted in a weak salinity 
front and weak salinity stratification compared to the observations. Figure 8 shows that DA has improved 
the salinity simulation for the PRE. For example, in the shelf waters deeper than 10 m, the largest salinity 
reduction by DA reaches 4 g/kg. Consequently, the salinities from the assimilation experiments are almost 
consistent with the observation. In the PRE, the salinity in the near-surface water was overestimated in the 
assimilation forecasts. The increased salinity by DA in the upper/deepwater enlarged the discrepancy be-
tween the upper waters and the deep waters. Compared to the DA runs with both observations and NoDA, 
it could be concluded that DA increased and improved the salinity stratification intensity (Lai et al., 2021). 
DA also decreased the mixing of the water columns. This was also verified at T2 in Figure 9. The surface 
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and subsurface salinities outside the estuary were decreased in the DA runs relative to that from NoDA, 
whilst the salinities were increased in the Pearl River. The maximum reduction and increment of salinities 
appeared respectively in DA01 and DA03, and both of them reached 1.5 g/kg (Figure 9). The salinity re-
duction outside of the estuary and the salinity increment in the Pearl River enhanced the salinity front and 
hindered the water exchange. Figure 9 also shows the thermocline was enhanced by decreasing the bottom 
temperature in the shelf, which also proved that DA decreased the mixing of the water columns in the shelf. 
Furthermore, the comparison of the DA runs shows that DA01 has slightly better performance relative to 
other runs. For instance, in the PRE, the bottom salinity from DA01 is closer to observations than that in the 
other runs. Furthermore, compared to observations at the shelf surface, the salinities obtained in both DA01 
and DA02 are better than the results from DA03 (Figure 8). In terms of temperature, the warm and cold 
biases in NoDA are found in the PRE and at the shelf surface, respectively. At the shelf bottom, DA eased 
the warm bias in both the PRE and the surface shelf waters, whilst there aren't any significant variations in 
the deep shelf waters.

At the west coast of the PRE, Figure 9 shows the T/S with and without DA at section T2 on July 25. The 
NoDA simulation has well captured the salinity stratification and the saline water intrusion in this section. 
In addition, the temperature is colder at the western bank than at the eastern bank in the PRE. After DA, 

Figure 7. Modeled volume transport per unit depth (left panel; unit: m2/s) of the control run, the transport difference (right panel; unit: m2/s) between the 
DA02 and NoDA for vertical average (a and b), the surface (c and d) and bottom (e and f) at July 25, 2015, respectively. The arrows in the left panel show the 
direction and magnitude of transport.
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the T/S at T2 has changed. For example, the temperature at T2 varied by DA mainly at the estuary and below 
the shelf thermocline, whereas waters from the PRE didn't show notable changes in temperature. For the 
salinity at T2, large changes appear in the mixed layer of the RES waters. In general, the T/S from DA03 has 
a smaller (larger) variation than that from DA02 (DA01), respectively, especially in the PRE. Furthermore, 
the DA03 yielded an increment similar to the DA01 and DA02.

Assimilating T/S can cause variations in the distribution of water masses. Figure 11 shows the T–S diagram 
of the observations and the experiment runs at all cruise stations. Here, we categorize the water masses into 
four types: the water mass from the PRE with salinity less than 30 g/kg and temperature larger than 28.1 °C; 
the surface shelf water mass with salinity greater than 30 g/kg and temperature larger than 25.1 °C; the 
subsurface shelf water mass with temperature less than 25.1 °C and salinity greater than 30 g/kg; and the 
mixed water mass between the PRE water and the surface shelf water with salinity smaller than 30 g/kg and 

Figure 8. The temperature (left panel; unit: °C) and salinity (right panel; unit: g/kg) profiles observed along T1 
(Figure 2a) on July 15, 2015; The prediction deviations of temperature and salinity in NoDA and the DA improvements 
of temperature and salinity relative to NoDA in DA01, DA02, and DA03, respectively.
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temperature smaller than 28.1 °C. As illustrated in Figure 11, all experiments reproduced these four water 
masses with different accuracy. However, compared to the observed one, NoDA shows the shelf water mass 
is colder at the surface and fresher at the subsurface, respectively. Furthermore, to the Pearl River water, 
NoDA is saltier and warmer relative to the observed one. For example, NoDA produced much water with 
a temperature between 28.1 and 31.0 °C and salinity less than 13 g/kg. However, these waters haven't been 
observed. The Pearl River water in the assimilation runs agreed with the observations much better. The as-
similation runs are also verified in the subsurface water, the water warmer than 35.0 °C is observed, which 
is not shown in NoDA but is shown in the DA runs. Apparently, the DA experiments generally produced a 
better distribution of the water mass in the RES waters off the PRE. The eastward transport at the estuary 
was weakened by DA. Therefore, less freshwater can flow out of the PRE in the DA runs and more freshwa-
ter in the PRE is simulated. DA also strengthened the intrusion of saline water from the shelf. As a result, 
the water of the mixed water mass was increased in the deeper layers. Below the thermocline, over the shelf, 

Figure 9. The cross-section (T2, Figure 2a) temperature (left panel; unit: °C) and salinity (right panel; unit: g/kg) simulated by the model, the simulation 
increment of the assimilation experiments on July 23, 2015.
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the improvement of water mass is also visible in the assimilation runs, where the salinity in NoDA is fresher 
than the observed salinity. Further, compared to NoDA, DA03 changed the freshwater in the PRE too much 
and worsened the distribution of the freshwater, whereas DA01 (DA02) has not significantly degraded the 
simulation of the PRE water. Moreover, the water mass below the shelf thermocline in both DA01 and DA02 
is slightly closer to the observed one compared to that in DA03.

5. Discussion
Our assessment is influenced by the spatial and temporal distribution of the validating observations. Liu 
et al. (2009) used a single observation to show how the adjustment by an upstream observation influences 
the downstream region in the shallow and narrow Straits. In this study, We assessed the general influences 
of all observations and presented the impact of the observation distribution on the DA results in the PRE. 

Figure 10. T–S diagram of all sampling stations for observation, NoDA, and data assimilation experiments, respectively. The contour lines denote the sigma-t 
density (unit: kg/m3). The arrows show where data assimilation has improved.
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The cruise moved generally eastward over the month of July 2015. The PRE circulations and tides are influ-
enced by the summer monsoon and the DA adjustments of T/S in the earlier observed areas could be trans-
ported to the downstream regions by currents and tides. So the earlier observations may have an impact 
on the newly observed area. This may be especially true as the cruise moves into different regimes (river 
month, outer shelf, bays, etc.). The evaluation in Figure 5 denotes that the improvement of T/S is greater in 
the mid-to-late period than in the early period of July 2015. Another example for this is that the modeled 
fields have a larger error in the western shelf (upstream region) than that in the eastern shelf (downstream 
region) (see Figure 6).

An appropriate assimilation window could benefit DA results by increasing observation information, es-
pecially for the region where it is difficult to collect observations. However, when an assimilation cycle 
is carried out in a coastal region like the PRE, too large an assimilation window may bring unreasonable 
observations into an analysis process, and this may cause failure analysis. On the contrary, if an assimi-
lation window is too short, important observation information may be lost and result in a worse analysis 
constraint (Liu et al., 2009). Lai et al. (2021) showed the influences of observations on the PRE forecast by 
using different assimilation window lengths and selecting the observations in the same assimilation win-
dow. In contrast to Lai et al. (2021), at every assimilation cycle of this study, we used an assimilation window 
with the same length but different assimilation time setup to emphasize the importance of the assimilation 
window for the PRE prediction. Both Lai et al. (2021) and this study indicate that choosing observations 

Figure 11. The standard deviation of temperature (a and b; unit: °C) and salinity (c and d; unit: g/kg) from ensemble samples with (a and c) and without (b 
and d) tidal signal on the mean surface layer (0–5 m) at the Conductivity-Temperature-Pressure profiles.
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at a different time has distinct DA performance of the PRE forecast. The observations may imply dynamic 
features of the RES region off Hong Kong (Lai et al., 2021). For example, the observed salinity discrepancy 
of the PRE reaches 7 g/kg in a different stage of a flood–ebb period. A more robust time window would be 
interesting to be studied for successful assimilation for a dynamic estuary–shelf system. For example, the 
selection of the DA time window associated with regional physics and the number of observation samples 
considering spatial variability in a simulated region like the PRE.

We used different numbers of samples in DA01(DA02) and DA03, the ensemble size may be another factor 
to influence the DA results of this study. To examine this, we stored snapshots in July 2014 and July 2015 
every 2 hr as a sample pool. From this sample pool, we randomly generated three snapshots ensembles with 
different sizes (60, 110, and 336) and three other daily averaged field ensembles with sizes of 35, 40, and 50. 
Then we compared the standard deviations (SDs) of these ensembles and the results didn't show an evident 
variation in the T/S SDs of the snapshot ensembles and the daily averaged ensembles, respectively. Accord-
ing to the EnOI equations, the ratio of |P| and |R| defines the “strength of attraction” of the forecast to the 
observations, which determines the DA adjustment. We used a stationary observation error covariance in 
all assimilation experiments. Therefore, the DA result of an EnOI system is directly controlled by |P|. To our 
sample pool, the SDs of those new ensembles indicate that the ensemble size isn't a key influence factor to 
the DA results in this study. The tidal signals in an ensemble may cause a large DA adjustment of salinity 
in both the mixed layers and the thermocline. To a snapshot ensemble, the surface fields retain the strong 
tidal signals (Figure 7), which are good to exhibit the effect of the tidal signals on DA. The tidal current 
with diurnal periods are dominant in the PRE waters (Lai et al., 2021). We used a 24-hour window to filter 
out the tidal signals from snapshots. The tidal signal in the ensemble leads to a large SD of the surface T/S, 
especially for waters along the western coastline of the Pearl River (see Figure 11). Compared to DA02, the 
larger adjustments of T/S at T1/T2 in DA03 are likely caused by unfiltered tidal signals in the ensemble, 
whilst DA03 produced a better prediction than DA02 for the shelf salinity and the Pearl River temperature 
when compared to the observations (see Figures 8 and 9). Therefore, an ensemble with tidal signals per-
formed better than an ensemble without tidal signals for the salinity in the shelf and for temperature in the 
Pearl River, respectively.

6. Summary and Conclusions
In this study, a DA system based on the EnOI method was applied for assimilating T/S profiles for the pre-
diction of the RES waters off the PRE. A set of simulation experiments was used to evaluate the effective-
ness of this DA system in an application to coastal waters encompassing a wide range of dynamic spatial 
scales. The DA system also allows the use of sparse profile observations. According to the dynamic features 
of the RES waters off the PRE, we examined the flexibility of the DA system implemented with the different 
sampling frequencies to address the T/S variability due to the multi-forcing of tides, winds, river runoff, 
and shelf currents. We also presented the importance of extracting reasonable observed information for the 
simulation of the RES waters off the PRE. Furthermore, the observation error was designed to vary with 
depth; this was done to model the complexity of unsolved processes and dynamics in the RES observations.

Based on the model–data comparison presented in this study, the simulation without DA shows evident 
biases in both T/S. The reasons for these biases are not totally understood yet, although it is inferred that the 
main reasons might be related to the imperfect initial conditions, biased forcing fields, and the limitations 
of model parameterizations. In general, DA has significantly increased the prediction skill of T/S, resulting 
in better simulations of T/S. During the experiment period, calculated with all observations, the overall RM-
SEs of T/S were reduced by 9.8%–23.5% and 4.2%–14.0% in the DA forecasting, respectively. Therefore, the 
sample ensembles and the observation error used in this DA system are suitable for improving the forecast 
of Hong Kong Waters.

The experiments were performed with different assimilation windows and sampling ensembles. We found 
that selecting a reasonable assimilation window is important to a DA simulation in a coastal region similar 
to the RES off the PRE, although we only assessed the assimilation window with the same length in the 
DA runs. Besides, the experiment results reveal that, to the water outside the PRE, the daily samples have 
advantages in reducing the warm bias and disadvantages in reducing the low salinity bias compared to the 



Journal of Geophysical Research: Oceans

LIU ET AL.

10.1029/2020JC017043

18 of 19

snapshot samples (Figure 8). In the PRE, the salinity adjustment of DA is more sensitive to the snapshot 
samples than the daily mean samples (Figure 9). The DA with daily mean samples and the assimilated time 
in the center of the time window gives a better prediction of T/S than the other simulations in the PRE. It 
also should be noted that our conclusions are only based on all samples in July of 2014 and 2015.

The experiment results were also validated with daily T/S observations in Hong Kong Waters. According 
to the EnOI equations, the assimilation of the T/S profile places an integral constraint on the total water 
volume. However, the main variation by DA is manifested in the upper layers. Therefore, the results show 
that the low salinity biases at the bottom predictions were hardly changed by DA relative to the high salinity 
biases in the upper layers. Based on the T/S at the selected cross-sections, we found that both the salty water 
intrusion and the fresher water outflow were captured by NoDA. However, the water exchanges between 
the PRE and the shelf contained substantial biases in NoDA. The change in currents in the DA experiments 
has a relatively small magnitude at the bottom compared to that at the surface. Both the stratification and 
the salinity front in the PRE have been weakened in the assimilation runs and are closer to the observations 
compared to those in NoDA. This implies DA is able to reduce the exchange bias. Further analysis with pas-
sive tracers is necessary to show the impact of the DA on a longer time scale. DA is also helpful in improving 
the simulation of the water masses in the PRE (Figure 10). Below the thermocline over the shelf, the salinity 
from NoDA is smaller than the observed value, whereas the salinity in the DA runs is reasonably improved. 
Moreover, the daily mean sample ensemble has an advantage in the water mass simulation in both the PRE 
and the water below the shelf thermocline relative to the snapshot-sample ensemble, especially for the 
freshwater in the PRE.
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