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Abstract
Collections of large ensembles of regional climate model (RCM) downscaled climate data for particular regions and scenarios 
can be organized in a usually incomplete matrix consisting of GCM (global climate model) x RCM combinations. When 
simple ensemble averages are calculated, each GCM will effectively be weighted by the number of times it has been down-
scaled. In order to facilitate more equal and less arbitrary weighting among downscaled GCM results, we present a method 
to emulate the missing combinations in such a matrix, enabling equal weighting among participating GCMs and hence 
among regional consequences of large-scale climate change simulated by each GCM. This method is based on a traditional 
Analysis of Variance (ANOVA) approach. The method is applied and studied for fields of seasonal average temperature, 
precipitation and surface wind and for the 10-year return value of daily precipitation and of 10-m wind speed for a completely 
filled matrix consisting of 5 GCMs and 4 RCMs. We quantify the skill of the two averaging methods for different numbers 
of missing simulations and show that ensembles where lacking members have been emulated by the ANOVA technique are 
better at representing the full ensemble than corresponding simple ensemble averages, particularly in cases where only a 
few model combinations are absent. The technique breaks down when the number of missing simulations reaches the sum 
of the numbers of GCMs and RCMs. Also, the method is only useful when inter-simulation variability is limited. This is the 
case for the average fields that have been studied, but not for the extremes. We have developed analytical expressions for the 
degree of improvement obtained with the present method, which quantify this conclusion.
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1 Introduction

Regional climate model (RCM) downscaling of global cli-
mate model (GCM) output is a most frequently used method 
to obtain geographically detailed and physically consistent 
information of local climate change effects (Giorgi 2019). 
It is a foundation for the possibility of climate services to 

have robust information on local geographical scale of future 
climate change (Hewitt et al. 2021).

Many different GCM simulations are available for down-
scaling, and many RCMs exist, which can perform such 
downscaling. In order to minimize effects of both model 
biases and internal climate variability on conclusions drawn 
from downscaling simulations, many different GCM simula-
tions need to be downscaled, preferably with many different 
RCMs.

RCM simulations require not just boundary conditions 
from GCMs but also a considerable computational effort, 
and therefore it is not feasible to perform simulations for 
all combinations of GCM simulations and RCM models. 
Traditionally, there has not been a synchronized strategy 
for how to combine GCMs with RCMs in order to obtain a 
matrix with a homogeneous use of plausible GCMs. Rather, 
such matrices are ensembles of opportunity, where prag-
matic circumstances have decided which simulations have 
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actually been performed (McSweeney et al. 2012). In spite 
of this, through a considerable international effort within 
CORDEX [the COordinated Regional climate Downscal-
ing EXperiment, Giorgi and Gutowski (2015)], combina-
tion matrices between the most frequently used GCMs and 
RCMs are being constructed for all continents. One of the 
largest efforts has been concerned with a simulation domain 
covering Europe in around 12 km grid distance, in the 
EURO-CORDEX community initiative (Jacob et al. 2020). 
Currently a matrix for 3 RCP (Representative Concentration 
Pathways) forcing scenarios, 10 GCMs and 13 RCM ver-
sions containing a total of 124 simulations exist.

In conventional ensemble analyses, the existing ensem-
bles of opportunity will give an unequal weight to the 
various GCMs caused by the quite arbitrary distribution of 
downscaling simulations for each GCM. Various methods 
for assessing characteristics of such ensembles of opportu-
nity have been tested. This includes both techniques to com-
prehensively analyse the existing simulations and methods 
to artificially fill up matrices by statistical methods. Alterna-
tively, methods to reduce size while attempting to retain as 
much of the uncertainty characteristics as possible are also 
used. A few examples include: Kendon et al. (2010), who 
used a linear pattern-scaling method for providing climate 
projections at the local scale in RCMs for different driv-
ing GCMs considering also untried GCM–RCM combina-
tions and Chadwick et al. (2011) who used artificial neural 
networks to fill up a sparsely filled GCM-RCM matrix. By 
utilizing the full time series in a functional data analysis 
method based on Euclidian distances between simulated 
trajectories of change and their first derivatives, Holtanová 
et al. (2019) emphasized the need for carefully assessing 
the choice of RCMs in any applied research. Also Bayesian 
techniques have been used, such as in Evin et al. (2019), 
who show that this can be used also to propagate uncer-
tainty due to missing information in the resulting estimates. 
Analysis of variance (ANOVA) is another method that has 
been extensively used to characterize the dependence of 
the ensemble mean characteristics on GCMs, RCMs and 
internal variability [e.g. Déqué et al. (2007, 2012), Yip et al. 
(2011) and Christensen and Kjellström (2020)]. Examples of 
how reduction of the number of simulations can be used are 
given by Mendlik and Gobiet (2016) and Wilcke and Bärring 
(2019), both applying clustering techniques.

In this study we examine a method, where “holes” in a 
GCM/RCM combination matrix can be emulated, based on 
information from the existing simulations in the matrix. The 
method is based on a standard ANOVA analysis with GCM 
choice, RCM choice, and simulation period as 3 determin-
ing factors of a field value, and works for NG×NR matrices 
where at least NG + NR  − 1 simulations exist, NG and NR 
being the number of GCMs and RCMs, respectively. We 
study the accuracy of the emulation and the effect of holes 

on both simple ensemble means and emulated ensemble 
means for a complete matrix consisting of 5 GCMs and 4 
RCMs for the RCP8.5 emission scenario and for the 12 km 
European EURO-CORDEX domain, where we analyse up to 
1000 combinations of simulations for each number of holes; 
see Christensen and Kjellström (2020) for details about the 
ANOVA analysis of these 20 simulations.

2  Methods and data

By use of an ANOVA analysis (e.g. Déqué et al. 2007; Yip 
et al. 2011; Christensen and Kjellström, 2020) it is possi-
ble under certain conditions to “fill holes” in a matrix, i.e., 
calculate emulated values for model combinations, which 
have not yet been filled by an actual simulation, based on 
an incomplete matrix of actual simulations. The terms of 
an ANOVA analysis determining the effect of period in a 
scenario, of GCM, and of RCM, are listed in Table 1. The 
strategy of ANOVA is a separation of the influences of var-
ious factors; here period, GCM choice and RCM choice, 
into average linear terms and multi-index cross terms. For 
instance, the G term will give the effect of the GCM choice 
averaged over RCMs and periods etc. Interdependence of 
RCM and GCM choice will be in the GR terms for each 
combination of GCM and RCM. Given trustworthy values 
of the linear (single-index) terms (Si, Gj and Rk from Table 1) 
in an ANOVA analysis, we can emulate values for the holes. 
For this purpose we postulate that there is no specific effect 
of the GCM-RCM combination in question, but that it is 
simply a sum of a period-specific, a GCM-specific and an 
RCM-specific term; since there is no way to estimate the 
single-simulation specific ANOVA contribution of an una-
vailable simulation, this contribution will be set to zero, 
and the resulting equations will be solved with the values in 
the positions without simulations as the unknown. In other 
words, we find the best possible value based on individual 
contributions from GCM and RCM identities.

The hole filling technique operates on each field, season, 
and point individually. We will use the notation Yijk for field 
values for a period i which is 1 for the present-day 30-year 
period and 2 for the future 30-year period; GCM is indexed 
with j and RCM with k; the notation is the same, whether the 
value is known or is missing. Note that averaging over each 
30-year period is implicit. In this study present and future 
periods either both exist or both do not exist.

The ANOVA method will write each individual term as 
a sum of linear terms and cross terms,

The requirement that all terms sum to zero over an 
explicit index leads to the term definitions in Table 1. 

(1)Yijk = M + Si + Gj + Rk + SGij + SRik + GRjk + SGRijk
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When a simulation is missing, we will now set the GCM-
RCM-specific terms to zero, SGRijk = 0 and GRjk = 0 for 
a hole corresponding to GCM j and RCM k and valid 
for both periods i = 1,2; this corresponds to the explicit 
equation

where the dots indicate averaging over a dimension. Since 
both total means and single-RCM or single-GCM means 
enter this equation, a fully coupled linear system of equa-
tions will result from a situation with several holes; these 
means will contain contributions from both the emulated 
value at ijk and from all other emulated values. This equation 
system is mostly but not always solvable.

The technique described above is now applied to sea-
sonal average fields obtained from 20 simulations from 
the EURO-CORDEX initiative (Jacob et al. 2014). The 
ANOVA analysis of these simulations, which form a 
complete matrix with 5 GCMs and 4 RCMs, has been 
described in Christensen and Kjellström (2020); the analy-
sis in that paper was performed for the 19 models avail-
able at the time, the remaining simulation emulated as 
described in that study. In the current study, all 20 models 

(2)0 = Yijk − Yij. − Yi.k − Y
.jk + Yi.. + Y

.j. + Y
..k − Y…

are available. The simulations have also been analysed in 
terms of performance for the historical climate (Vautard 
et al. 2020) and for climate change (Coppola et al. 2021). 
The models are listed in Table 2.

For a number n of holes, there are a total of 20!/(n! (20-
n)!) different combinations. For 1 and 2 holes this number 
is 20 and 190, respectively; these matrices are all solvable 
(see below). We have performed the calculation for all 
configurations with one and two holes. For larger numbers 
we have limited ourselves to 1000 randomly chosen dif-
ferent solvable configurations with the given number of 
holes. For each of the resulting matrices, the hole-filling 
algorithm is applied.

In order to examine significance related to an ANOVA 
analysis, equality of interannual variance is a general pre-
requisite. We have not performed any formal test for such 
homoscedasticity but we note that, for the fields consid-
ered, pointwise ratios between maximum and minimum 
variability are sometimes above 2. This may, as a rule of 
thumb, be considered as an upper level for equal variance 
(Yang et al. 2019) implying that this general assumption 
is violated. However, as the ratio is most often less than 4 
and as sample sizes are equal, which acts to minimize the 

Table 1  Formulae for the various ANOVA terms, under the requirement that all terms sum to zero over any single index

Dots indicate mean over indices

Term Brief explanation Sym-
bol

Definition

Grand ensemble 
mean

The average over both periods and all simulations M Y…

Scenario effect (cli-
mate change)

The deviation of one period’s average from total mean, i.e., half the 
mean climate change

Si Yi..−Y…

GCM climate effect Mean deviation of simulations with GCM j from total mean. For both 
periods

Gj Y
.j.−Y…

RCM climate effect Mean deviation of simulations with RCM k from total mean. For 
both periods

Rk Y
..k−Y…

GCM climate change 
effect

Half of the mean deviation of climate change for simulations with 
GCM j from total mean of the term

SGij Yij.−Yi..−Y .j.+Y…

RCM climate change 
effect

Half of the mean deviation of climate change for simulations with 
RCM k from total mean of the term

SRik Yi.k−Yi..−Y ..k+Y…

GCM-RCM cross 
term for mean

The deviation of one simulation, averaged over both periods, from 
the part explained by linear terms above (M + G + R)

GRjk Y
.jk−Y .j.−Y ..k+Y…

GCM-RCM cross 
term for change

The deviation of half the climate change of one simulation, from the 
part explained by linear terms above (SG + SR)

SGRijk Yijk−Yij.−Yi.k−Y .jk + Yi..+Y .j.+Y ..k−Y…

Table 2  Global and regional models analysed in this study

GCMs CNRM-CM5 (Voldoire 
et al. 2013)

EC-EARTH (Hazeleger 
et al. 2012)

HadGEM2-ES (Collins 
et al. 2011)

MPI-ESM-LR (Giorgetta 
et al. 2013)

NorESM1-M (Bentsen 
et al. 2013)

RCMs HIRHAM5 (Christensen 
et al. 2007)

REMO2015 (Jacob et al. 
2012)

RACMO22E (van Meij-
gaard et al. 2008)

RCA4 (Kjellström et al. 
2016)
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influence of this type of violation, we neglect any influ-
ence of this on the results. Also, we note here that the 
ANOVA technique is used here to emulate non-existing 
simulations and that significances associated with its terms 
are of lesser importance.

2.1  Matrix properties

We find minimum requirements for properties of the 
GCMxRCM population matrix (one if a simulation exists, 
otherwise zero) for enabling unique calculations of emulated 
values for the empty holes. Examples of population matrices 
where the procedure does not work are instances with no 
simulations at all for a specific GCM or a specific RCM. 
Also, situations where the matrix can be split into two non-
connected sub-matrices are invalid; see examples in Fig. 1. 
Conceptually: If one sub-matrix has generally much higher 
values than a remaining disconnected sub-matrix, there is no 
way to know if the set of GCMs or the set of RCMs are the 
reason; this is reflected in a redundancy in the set of equa-
tions, which makes the solution non-unique.

The minimum necessary properties that each GCM and 
also each RCM is represented at least once, and that each 
simulation shares at least either the same GCM or the same 
RCM with others, and finally that no independent sub-matri-
ces exist, lead to a minimum number of existing simulations 
of NGCM + NRCM – 1. At the same time, it is straightforward 

to generalise the examples above to show that this number 
is also sufficient to solve the equation. So, even if there may 
exist other rules than those above, which may disqualify par-
ticular combination matrices, it still holds that the minimum 
number of existing simulations for applying the method 
studied is the number above, the sum total of both kinds of 
models, minus one.

For the current situation of five GCMs and four RCMs the 
maximum number of holes turns out to be twelve. It means 
that for a 5 × 4 GCM-RCM matrix we need at least eight 
simulations to have a chance to build the entire matrix with 
this ANOVA technique. Of course it does not mean that the 
reconstruction of the missing element would be satisfactory 
in practice, but that it is a minimum number of simulations 
required.

An example of the kind of equation system to solve is 
the following, where we have two holes, Yij’k’ and Yij’’k’’ and 
assume that j’ ≠ j’’ and k’ ≠ k’’, i.e., that the holes represent 
different GCMs as well as different RCMs. Let’s look at the 
control period i = 1. In Eq. 2 only the last term, the total 
ensemble mean, connects the two holes. The two-dimen-
sional system can then be expressed in the form

where the number of GCMs is NG = 5, the number of RCMs 
is NR = 4, and the B indicate expressions, which do not 
depend on the unknown hole values, only on various aver-
ages of existing simulation data for the point, season, and 
field in question. The exact definitions can be determined 
from Eq. 2.

It is important for the practical feasibility of using this 
method, that only one matrix inversion is necessary for each 
model combination. The only operation proportional to the 
number of points and seasons is the matrix multiplication 
necessary for obtaining the Y values corresponding to matrix 
holes.

3  Results and discussion

3.1  Effects of missing simulations

We want to study to which degree sparsely filled matrices, 
where holes are synthetically filled, can replicate features 
of the full matrix. Any simulation-specific contribution to 
the field for the simulation being removed, like effects of 
internal variability, as represented in the corresponding full-
matrix GR and SGR terms, can in no way be emulated, as 
this information is removed from the underlying data along 
with the simulation; this includes effects of GCM-RCM 
dependency for the combination being removed. Here our 
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Fig. 1  Examples of four GCM × RCM matrices with twelve holes. 
The two in the top are solvable. The bottom two not: The first can be 
split into two disconnected sub-matrices as indicated by yellow and 
green colours; the second has a row without simulations (red)
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aim is to investigate the deterioration of the emulated values 
as a function of the number of holes.

An example is shown in Fig. 2, where we look at the 
ensemble mean temperature averaged over both periods (Y.jk) 
as well as the mean climate change (Y2jk – Y1jk) separately at 
a seasonal basis, and calculate root-mean-square differences 
of values over the model domain as well as over j and k. For 
each matrix, the holes have been filled as described above.

For a number n of holes, we look at each jk combina-
tion in turn, find the matrices where jk is one of the holes, 
and calculate the average squared deviation from the 1-hole 

emulated value across all grid points. We average this quan-
tity over all matrices with a hole at jk, and after that over 
all jk combinations. In the end we have, for each field and 
season investigated, a measure of the mean squared devia-
tion from the best emulated value, as a function of n. Taking 
the square root we have a measure of the deviation from the 
emulated value based on only one hole. The unit is the same 
as that of the quantity examined.

In Figs. 3, 4 and 5 we present results from the analysis of 
our collection of configurations for the three fields analysed: 
Seasonal mean temperature, mean precipitation, and mean 

Fig. 2  Average RMS devia-
tion (deg. C) from one-hole 
emulated values of seasonal 
mean temperature as a function 
of the number of excess holes 
(the number of holes more than 
the one hole we compare to, 
for each hole in each configura-
tion). Up to 1000 configurations 
have been examined for each 
number of holes (see text). 
More than 11 excess holes, i.e., 
a total of less than 8 existing 
simulations, cannot be treated 
with this method. Solid lines: 
mean climate. Dashed lines: 
Future minus mean, i.e., 50% of 
the climate change signal. DJF 
blue, MAM green, JJA orange, 
SON black

Fig. 3  Like Fig. 2, but for pre-
cipitation (mm/d)
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10 m wind speed. For a given configuration, we compare the 
emulated field with the corresponding emulated field when 
only the combination in question is missing, i.e., the one-
hole situation. The reason for this procedure is the intent to 
not include the specific characteristics of this combination 
but only look at the deterioration of the emulation as more 
and more actual simulations are removed.

The curves show the RMS average over missing simula-
tions, over all matrices, and over points. Full curves show 
results for mean climate, whereas dashed curves show 
results for climate change.

The shapes of these curves are quite similar: A large jump 
in deviation appears when 1 extra hole is introduced. After 
that there is a slight upwards curve as a function of the num-
ber of holes, until we reach the maximum possible number 
of 11 extra holes, where we note that the steepness of the 
curves increases. The average deviation over the full domain 
is of the order of 5–10 times larger for 11 extra holes com-
pared to 1 extra hole both for the mean and for the climate 
change signal. We also note that there are differences in how 
large the errors are between the seasons. Winter stands out 
with the largest error for the mean climate for all three vari-
ables. Conversely, spring shows the smallest error. For the 
climate change signal the difference between the seasons are 
less consistent. However, winter stands out also here with 
larger errors for temperature and wind speed than in any of 
the other seasons.

A possible contribution to the large deviation for winter 
is illustrated in Fig. 5, bottom row: The differences between 
emulated and actual temperatures are quite large for sea-ice 
covered areas in the Barents Sea and north of Iceland. These 
regions were also recognised in Christensen and Kjellström 

(2020) as areas with a large SGR cross-term in the ANOVA 
analysis. In other words, since the behaviour over sea ice is 
influenced by the particular combination of the GCM sea 
ice distribution and the RCM physics, the current emula-
tion procedure will not be well suited to describe such areas 
due to the basic assumption that SGR is set to zero for the 
missing simulations.

3.2  Estimating ensemble averages

A different way to approach the issue of added value from 
the hole-filling procedure is to look at how to best estimate 
the complete matrix mean including all 20 simulations from 
a set of fewer available simulations. This complete matrix 
mean is not necessarily closer to the physical truth than a 
simple average; it does, however, introduce a more “demo-
cratic” weighting of both the RCMs and the GCMs involved. 
In a pure ensemble of opportunity, each GCM will have an 
effective weight corresponding to the number of times it has 
been downscaled, and correspondingly for each RCM. With 
the technique being developed here, however, there will be 
equal weight between the GCMs chosen to be represented in 
the matrix and also between the RCMs. We have therefore 
analysed two strategies for approximating the filled-matrix 
ensemble average from an incomplete matrix: The simple 
ensemble-of-opportunity “direct” average of the existing 
simulations in the incomplete matrix, and the mean obtained 
from matrix filling with emulated values filled into holes as 
outlined in this study. As opposed to Sect. 3.1 we will go 
back to a comparison with the full matrix.

In the presentation of this section we will concentrate on 
temperature for illustration purposes. In Fig. 5 we see an 

Fig. 4  Like Fig. 2, but for aver-
age 10-m wind speed (m/s)
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example for one arbitrary 5 × 4-member matrix with 12 holes 
and only 8 simulations. It is clear that the direct 8-member 
ensemble-of-opportunity mean is mostly much farther from 
the complete-matrix “truth” than it is possible to achieve 
with the matrix-filling method used here. Further, we note 
relatively poor performance for the direct-average method 
over sea in general, where the emulation technique gives 
equal weight to the SST values of each GCM, just as in 

the true full-matrix average. A notable exception is the sea 
ice covered areas north of Russia and of Iceland, where the 
matrix filling technique is further from the true average than 
the direct average. The emulated results are worse in some 
northern sea-ice covered areas, where Christensen and Kjell-
ström (2020) saw large difference between individual simu-
lations and their emulated counterparts, i.e., a large role of 
specific GCM-RCM combinations. This is probably related 

Fig. 5  Top: Deviation of one direct 8-model average DJF temperature 
from true 20-model average (deg. C). Bottom: Deviation of emulated 
20-value average based on the same 8 models from true 20-model 

average. The left column shows differences in mean climate, the right 
column shows differences in (full) climate change
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to specifics of sea ice description in the 8 models used, com-
pared to the total ensemble. This needs further investigation.

To systematise this also for other number of holes and 
other seasons, we plot in Fig. 6 the RMS average over all 
points and all matrices of deviations as those shown in Fig. 5 
as a function of the number of holes. It is clear from the 
figure that the matrix-filling procedure creates a matrix that 
is much more similar to the original full matrix compared 
to the direct mean of any ensemble of opportunity consist-
ing of fewer members. This is true for all numbers of holes 
investigated both for the mean climate (top panel) and for 
the climate change signal (bottom panel).

Adding perspective, in Fig. 7 we add a curve spanning all 
possible numbers of holes, where 1000 different combina-
tion matrices (20 for 1 and 19 missing simulations, 190 for 
2 and 18 missing simulations) have been chosen randomly, 
since there are no solvable matrices for more than 12 holes. 
Note the small discrepancy around 10–12 holes between the 

mean deviation of completely random but different combina-
tions and mean deviation of only solvable different combina-
tions—this must be because non-solvable combinations will 
frequently miss an RCM or a GCM entirely, hence deviat-
ing more from the true average than combinations where all 
models are represented; ensembles of solvable matrices are 
more homogeneous among models and therefore somewhat 
closer to the true average.

A comparison between the present hole-filling averaging 
and the simple averaging is detailed in Fig. 8, showing the 
ratio between the two measures for the same sets of combi-
nation matrices. Here, we show the results for temperature, 
precipitation, and 10-m wind speed; we will also investigate 
10-year return values of daily precipitation and 10-m wind 
speed. It can be seen that the improvement taking the emu-
lated mean versus the primitive mean is always largest when 
only a few simulations are missing. For temperature we can 
estimate the true ensemble mean of both mean climate and 
climate change around 3 times better with the ANOVA-
based technique than we do with simple averaging of avail-
able models when the matrix is almost complete, decreas-
ing to around a factor of 2 when we reach the limits of the 
current technique. For precipitation the situation is similar 
but with somewhat smaller ratios, falling from around 2.5 
to around 1.5. For wind speed we see large improvements 
for the mean climate, similar to temperature, whereas there 
is hardly any improvement for climate change. For the 
extremes investigated we find that this method does not add 
any improvement over the primitive average.

3.3  Mathematical modelling of ensemble averaging 
methods

To put the results into perspective, let us estimate which 
dependence on the number of holes we may expect. We will 
for a moment assume that the ensemble can be viewed as 
following a statistical distribution with a constant spread 
around a mean, which we for the moment set to zero. Let 
there be NG x NR = N members in total of the matrix, and let 
us examine m holes.

The emulated values will be located around the same 
mean, but have a variance, which is considerably lower, 
at least for large matrices, since they are determined by 
summation rules involving sums of many existing simula-
tions. Simple calculations of the dependence on m show 
that the deviation is proportional to 

√

m for the emulated 
mean, and to 

√

m∕(N − m) for the direct mean; the emu-
lated mean will have a smaller deviation than the direct 
one, and the ratio between them will grow with m. Let us 
look at a matrix of independent random numbers. When-
ever a hole is created, the emulation will replace this ran-
dom variable with a sum of random variables; for the first 
hole the variance of the emulated number will be a factor 

Fig. 6  RMS deviations over points and bootstrapped simulations 
of deviation from true 20-model complete matrix average seasonal 
mean temperatures as a function of the total number of holes. Full 
lines: Deviation of direct average of ensembles from 20-model truth; 
dashed lines: Deviation of means over emulated full matrix from 
20-model truth. Top panel: Mean climate. Bottom panel: climate 
change. DJF blue, MAM green, JJA orange, SON black
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(NG – 1)(NR – 1) smaller than the simulation variance, or 
almost negligible. Ignoring interactions between holes, we 
get to the first order that the variance will be proportional 
to the number of holes, and hence the deviation will be 
the square root of that. For the direct mean, the devia-
tion between the full and the reduced matrix mean will 
be (1/N–1/(N-m)) times the sum of existing simulations, 
plus 1/N times the sum of actual values of the holes. The 
variability of this can be reduced to m/(N(N-m)) times the 
single-simulation variability.

These dependence formulae are built on several assump-
tions. However, testing them on the actual data shows 
them to be very accurate to model the full curves for the 

actual analysis of Fig. 7 as a function of m with the form 
A
√

m∕(N − m) (Fig. 9). Also, the ratio between the two 
kinds of deviation depends on m as 1∕

√

(N − m) as expected 
from this simple analysis (Fig. 10), though with a slight 
downward bend for the largest possible m.

If we assume the functional form to hold for the real 
simulation matrix as a function of m, also for m = 1, we 
can straightforwardly calculate the mean deviation (D) 
between one-hole averages and true averages both for emu-
lated and direct means, averaged over all one-hole configu-
rations, and use the results to calculate proportionality fac-
tors. For simplicity of the equations below, we will ignore 
the scenario index (S) in these calculations and do it for 
the mean over scenarios; the results apply similarly to each 

Fig. 7  Extension of Fig. 6 with simple averages of random ensembles added. Left column: Mean climate. Right column: Climate change. Top: 
Temperature (K). Middle: Precipitation (mm/day). Bottom: Wind speed (m/s). The legend applies to all panels. See text
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scenario individually; for climate change, the RMS mean 
of the SGR term replaces the GR term in the formulae, SG 
and SR replace G and R. The results are:

(4)Demulated(1) =

√

GR2

�

NG − 1

��

NR − 1

�

where the ANOVA terms correspond to the full matrix anal-
ysis, and where angled brackets indicate average over the 
matrix. Combining our approximations, we find the general 
formulae

With these formulae we can, e.g., ask how large an 
improvement would be expected, using the slightly more 

(5)Ddirect(1) =

√

G2 + R2 + GR2

(N − 1)

(6)Demulated(m) =

√

GR2

�

NG − 1

��

NR − 1

�

√

m(N − 1)

N − m

(7)Ddirect(m) =

√

G2 + R2 + GR2

(N − 1)

�

m(N − 1)

N − m

Fig. 8  Ratio between the square root of mean over combinations of 
squared difference between incomplete-ensemble mean and true 
ensemble mean, and the corresponding squared difference between 
emulated-ensemble mean and true ensemble mean. Solid lines: mean 
climate. Dashed lines: Climate change signal. DJF blue, MAM green, 
JJA orange, SON black. Top panel: Temperature. Middle panel: Pre-
cipitation. Bottom panel: 10 m wind speed

Fig. 9  The simple-average curves of Fig.  7 for temperature, divided 
by 

√

m∕(N − m) . Full lines: Mean climate. Dashed lines: Climate 
change. DJF blue, MAM green, JJA orange, SON black

Fig. 10  The deviation ratio of Fig.  8 for temperature, divided by 
√

N∕(N − m) . Solid lines: Mean climate. Dashed lines: Climate 
change. DJF blue, MAM green, JJA orange, SON black
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complex emulated mean compared to the simple mean, 
provided that the goal is to be close to the total full-matrix 
mean. The ratio between the emulated and direct mean is

Remembering that the denominator in the square root is 
the total model variance for scenario means, we see that 
the expected improvement in estimating the total mean is 
directly proportional to the relative importance of the GR 
terms in the ANOVA analysis, i.e., how “well-behaved” the 
multi-model ensemble is towards being a sum of a GCM 
effect and an RCM effect (The G and R terms). The bet-
ter behaved, the more reason to use an emulated estimate. 
The presence of noise at interannual to decadal scale will 
decrease the advantage of emulation, since individual simu-
lations will be out of phase and therefore have relatively 
large individual GR values. These observations are reflected 
in the results of this study: Noisy fields like precipitation and 
wind, and especially extremes, have only a weak determin-
istic part, which can be described with the ANOVA terms, 
and have a large remaining noisy contribution to variability.

These formulae should work for each point and each sea-
son. In other words, it is possible to construct maps based 
on ANOVA parameters, which show the areas with the 
most likely improvement in results using emulation instead 
of direct averages. Of course, in a real-life situation with 
a given non-complete combination matrix, the full-matrix 
ANOVA parameters will have to be approximated from the 
parameters based on the emulation itself.

(8)

Demulated(m)

Ddirect(m)
=

�

GR2

G2 + R2 + GR2

(N − 1)3∕2

�

NG − 1

��

NR − 1

�
√

N − m

In Table 3 we show the ratio for m = 1 for the 4 seasons 
and five fields: average temperature, daily precipitation, and 
10 m wind speed as well as the 10-year return value of daily 
precipitation and of maximum daily 10-m wind speed. In 
summary, the method is better suited for mean fields than 
for climate change; it is better for temperature and wind 
than for precipitation. There seems to be no systematic sea-
sonal dependence, which is common for all fields. The error 
reduction, which is RMS averaged over points and over con-
figurations, varies from a fourfold improvement for some 
temperature fields to a reduction of roughly one third for 
precipitation climate change.

For extreme precipitation and wind speed there seems to 
be no value at all using the emulation. According to Eq. 8, 
one missing simulation is the configuration where we expect 
the largest advantage of emulation, so we conclude that the 
spread between individual simulations due to climate vari-
ability, as manifested in the single-simulation GR and SGR 
terms, are too large for emulation to add value. In Fig. 11 
we show the relative difference between the two deviations 
across Europe for winter averages of temperature, 10-m 
wind speed, precipitation, and 10-year return value of daily 
precipitation for configurations with a single missing simu-
lation. It is clear that there is a large gain over the Atlantic 
Ocean for the averages, since this is very directly determined 
by the GCM with quite small variability; “GCM democ-
racy” makes a relatively large difference in this case. For 
all seasonal-average fields, there is added value in all points 
with very few exceptions, using emulation instead of direct 
averaging. For the extreme case there are no areas with a 
systematic added value of the emulation technique at all. In 
this case, the individual simulation results at each individual 
point are influenced by internal variability, and the ANOVA 
analysis does not work well at all.

4  Conclusions

The current work focuses on a systematic investigation of 
effects of making a GCM-RCM matrix sparser and sparser. 
This allows for a quantification of how the emulation pro-
cedure deteriorates for more and more sparse matrices or, 
conversely, how much information may be gained by add-
ing new simulations to existing sparse real-world simula-
tion matrices compared to a filling with emulated values. Of 
course, we can only aim for an emulation of matrices, which 
are already partly populated; it is an additional challenge not 
addressed here to ascertain that the GCMs and RCMs in the 
matrix as far as possible are representative for larger multi-
model ensembles. In situations where a well filled matrix is 
extended by addition of new simulations, e.g., a new GCM 
model downscaled by one or a few of the RCMs already 
in the matrix, the present technique can be used to fill in 

Table 3  The ratio between emulated-mean and direct-mean deviation 
from full-matrix mean for one-hole matrix configurations for tem-
perature, precipitation, 10 m wind speed, and 10-year return value of 
daily precipitation and of 10-m wind speed, for each season in per 
cent

DJF MAM JJA SON

Mean climate
Temperature 34 27 33 34
Precipitation 41 36 49 44
Wind speed 29 27 29 30
Extreme precipitation 123 115 115 101
Extreme wind 134 133 129 123
Climate change
Temperature 48 38 32 25
Precipitation 58 64 72 64
Wind speed 54 57 56 52
Extreme precipitation 120 121 121 123
Extreme wind 122 122 122 123
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emulated values for the simulations with the new GCM not 
yet performed, and give an estimate of an ensemble average, 
where the new GCM has the same weight as the already 
present GCMs. It should be noted that the technique is lin-
ear and is unable to emulate effects of specific GCM-RCM 
combinations not in the matrix.

It turns out to be possible to get a general idea about the 
gains of using emulation to try to obtain a better ensemble 
average of a field with equal weighting of the participating 
GCMs directly from the full-matrix ANOVA parameters. 
This estimate does not specifically depend on the field in 
question, nor on season etc. It only depends on these through 

the values of the actual ANOVA parameters of the full 
matrix.

In a real-life situation, the combination matrix will be 
given, based on the actual simulations at hand. Averages 
based on emulation are expected to generally give better 
results than direct averages; based on the present analysis, 
the expected improvements can be estimated point by point 
and season by season from Eq. 8. The improvement is large 
when either the GCM or the RCM choice has a large influ-
ence on simulated results; it is smaller when the individual 
combination and/or inter-annual variability has a large influ-
ence compared to inter-simulation variability.

Fig. 11  Relative difference between emulated ensemble average 
deviation from true mean and direct ensemble average deviation from 
true mean, i.e., the relative improvement by using emulation instead 
of direct averages, for winter (DJF) precipitation change. Top panel: 

Seasonal average temperature. Second panel: Seasonal average 10-m 
wind speed. Third panel: Seasonal average precipitation. Bottom 
panel: 10-year return value of daily precipitation. Greenish colour 
means the emulation is worse than direct average
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While the ANOVA-based hole filling technique works well 
when there is skill in the ANOVA contribution-splitting itself, 
our results for the 10-year precipitation return value shows 
that it does not work well when the ANOVA linear-term vari-
abilities are much smaller than the total ensemble variability. 
This expected result is seen extremely clearly. The analytic 
formula for the two different ways of calculating the mean of 
an incomplete matrix shows that the ratio between emulated-
matrix-mean error and direct-mean error is simply propor-
tional to this term, for scenario mean matrices and for climate 
change matrices (not explicitly shown but exactly the same 
calculations).

A future perspective would be to investigate if it is pos-
sible to go beyond the current model-only world and learn 
something about biases. One obvious step would be to make a 
missing-simulation analysis of bias, i.e., investigating to which 
extent the biases of individual simulations can be written as 
the sum of a GCM-specific part and an RCM-specific part; 
Sørland et al. (2018) find that this is a problematic statement, 
and it would be interesting to investigate in the current very 
large ensemble. This would supplement the current analysis 
of mean fields and of climate change and also supplementing 
the evaluation of the entire ensemble performed by Vautard 
et al. (2020).

A further perspective, which will also be pursued in the 
future, is to put these results into perspective through further 
analyses of the role of internal variability, particularly of the 
GCM, in significance determination. Even when looking at 
30-year averages, longer-time variations exist in GCM simula-
tions, the details of which can be studied through downscaling 
of different ensemble members of the same GCM.

Appendix 1

In this appendix we will derive the expressions for ensemble 
averages in Eqs. 4 and 5, when there is exactly one simulation 
missing in a matrix. The ANOVA terms below will refer to 
their values for a complete matrix.

We will take each averaging method in turn. First the emu-
lated mean (Eq. 4) in comparison to the complete-matrix aver-
age. The term Demulated(1) is defined as the square root of the 
mean over configurations (hole positions) of the squared dif-
ference between the complete-matrix average and the emulated 
average.

In the derivation presented here, we will look at the average 
over periods to keep the equations manageable. We will use 
tildas for the situation with an incomplete matrix containing 
one emulated value, and non-tilda symbols for the full matrix. 
The derivation for each period proceeds in the same way, but 
has more terms. We let jk be the place with a missing simula-
tion, and isolate Ỹ

.jk. from the equation = 0:

which leads to

We now calculate the difference in average between the 
complete matrix and the one with an emulated value. Since 
only the emulated place is different, we have the difference

Taking the square, averaging over all jk and finally tak-
ing the square root leads to Eq. 4.

The second part is the difference between the direct 
averages of a full matrix and a matrix with one hole.

The direct average of the incomplete matrix can be writ-
ten as

Therefore the difference in averages is

Squaring, averaging over jk and taking the square root 
leads to Eq. 5, noting that the complete spread of Y

.jk. across 
the matrix by the ANOVA definitions is G2 + R2 + GR2.
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.jk − Y

..k +
1

NG

(

Y
.jk − Ỹ
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.jk

)

Ỹ
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