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Abstract

The interactive HOMER is automated by the use of a set of parameters. This

approach retains the skill and flexibility of an interactive method, but adds the

speed and reproducibility of an automatic method. The automation of the

interactive HOMER also enables systematic testing. Its performance is evalu-

ated by the homogenization of the Indecis homogenization benchmark

datasets. The overall performance of the interactive HOMER compares well

with the methods using the homogenization tools Climatol and ACMANT and

surpass the performance of the standard automatic HOMER. All the homoge-

nization methods reduce the initial error. The average residual error and all

error percentiles below and including the 99th error percentile do not differ

more than 0.3�C between interactive HOMER and the other methods. Interac-

tive HOMER and Climatol report fewer homogeneity breaks than the true

number, while standard automatic HOMER and ACMANT report more homo-

geneity breaks. Across the methods, a higher number of reported homogeneity

breaks renders a higher share of the true homogeneity breaks to be detected,

but also a higher share of the reported breaks to be false positives. On average

the differences in the corrected times series are small between the methods

implying that the choice of homogenization method is a matter of preference.
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1 | INTRODUCTION

Time series of meteorological observables might have
nonclimatological shifts (henceforth, homogeneity breaks
or simply breaks). These homogeneity breaks can be cau-
sed by changes in, for example, observation times, site or
instruments. A true climate signal can be distorted by

Abbreviations: CRMSE, centred root mean square error; POD,
probability of detection; POH, probability of hit; RMSE, root mean
square error; Se, Sweden; Si, Slovenian; tn, daily minimum
temperature; tx, maximum daily temperature.
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such homogeneity breaks. Climatological studies require
observational data to be homogenized (World Meteoro-
logical Organization, 2017a; 2017b). There is an array of
homogenization software tools available (Venema
et al., 2020), both interactive and automatic.

Within homogenization methods using interactive
tools, an operator investigates outputs from the tool and
selects the time of homogeneity breaks. The data is then
homogenized accounting for the selected homogeneity
breaks. Interactive methods make use of the operator's
skill and knowledge of the station network. If several
large data sets are to be frequently homogenized, interac-
tive methods might be unappealing as they are time-con-
suming. It is also difficult to quantitatively evaluate an
interactive method as such evaluation is practically lim-
ited to smaller data sets and the results depend on subjec-
tivity of the operator. Methods using tools that
automatically select the time of homogeneity breaks and
perform the homogenization can be used in a more time
efficient way. Naturally, a problem with such methods is
that they may not take skill and knowledge of experi-
enced operators into account, which may lower the qual-
ity of the homogenization. However, studies have shown
that such methods can perform as well as interactive
methods (Venema et al., 2012).

The Swedish Meteorological and Hydrological Insti-
tute (SMHI) has homogenized data sets of monthly aver-
ages of daily mean temperature and monthly
precipitation observations from the Swedish network of
weather stations using the Standard Normal Homogene-
ity Test (SNHT) (Alexandersson and Moberg, 1997).
SNHT is a reliable but labour intensive method. A new
homogenization protocol is to be established at SMHI,
including the selection of a homogenization tool. A can-
didate is the well-established HOMogenizaton softwarE
in R (HOMER) (Mestre et al., 2013) that has been initially
tested at SMHI. HOMER has been used by several meteo-
rological institutes (e.g., Coll et al., 2014; Vertačnik
et al., 2015; Kuya et al., 2020) and in numerous scientific
studies (e.g., Mor�an-Tejeda et al., 2016; Kivinen
et al., 2017; Vicente-Serrano et al., 2017). HOMER can be
run in either interactive or automatic mode. In the inter-
active mode, HOMER suggests a number of homogeneity
breaks for an operator to reject or confirm. In the auto-
matic mode, HOMER automatically confirms or rejects
homogeneity breaks.

A few issues have been reported with the use of
HOMER in operational use. The automatic mode of
HOMER has been found to deliver biased corrections of
temperature time series of a network of stations in
Switzerland (Gubler et al., 2017). The error could poten-
tially be linked to a shift in temperatures over large parts
of western Europe around 1987 (De Laat and

Crok, 2013). Gubler et al. (2017) dissuaded the use of
HOMER in automatic mode. A similar problem was also
found by Mestre et al. (2013) who states 'However, the
automatic joint-detection is not perfect'. Furthermore,
the automatic mode of HOMER is not actually fully auto-
matic and can therefore not be run in batch mode
(Guijarro et al., 2017).

Pérez-Zan�on et al. (2015) used HOMER in interactive
mode when comparing HOMER and the homogenization
tool Adapted Caussinus-Mestre Algorithm for Networks
of Temperature series (ACMANT) (Domonkos
et al., 2011). They conclude: 'While HOMER detects more
breaks supported by metadata, this method is also more
dependent on the user skill and thus sensitive to subjec-
tive errors'. Vertačnik et al. (2015), who used HOMER in
an ensemble type operation with up to six experts inde-
pendently homogenizing a smaller data set of the
Slovenian station network, concluded that 'This semi-
automatic homogenization approach based on metadata
gave more reliable homogenization results than a fully
automatic approach without metadata'. Even though the
problem of subjectivity thereby is avoided, such operation
is impractical as it requires the participation of several
experts.

The current study has two objectives:

1. Develop a homogenization method that combines the
speed of HOMER's automatic mode with the skill and
flexibility of HOMER's interactive mode

2. Enable quantitative evaluation of HOMER's interac-
tive mode

To achieve these objectives, HOMER's interactive
mode is automated using a number of parameters. The
method is evaluated by homogenizing monthly tempera-
ture time series of the synthetic Indecis benchmark data
set (Indecis Project, 2017). The data set includes daily
maximum (Tmax) and daily minimum temperature (Tmin)
of two separate networks. The two networks reflect dif-
ferent real world like conditions. The evaluation of
HOMER is made without facilitative measures, such as
splitting of the network (Pérez-Zan�on et al., 2015; Kuya
et al., 2020) and without the influence of the operator
skill. The results are compared with the results of the
homogenization by the well-established homogenization
tools Climatol (Guijarro, 2018) and ACMANT. The selec-
tion of reference series and the number of homogeniza-
tion iterations are investigated in more detail.

The rest of the article is organized as follows. In Sec-
tion 2 the tool HOMER, and how it is typically used, is
described (Section 2.1), along with a shorter description
of the benchmark tools (Section 2.2) and the evaluation
data set (Section 2.3). In Section 3 the automation of
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HOMER (Section 3.1), how the tests are conducted
(Section 3.2) and evaluated (Section 3.3) are described.
The results are presented in Section 4 and discussed in
Section 5. The article is rounded up with conclusions in
Section 6 and outlook for future studies and development
in Section 7.

2 | DATA AND TOOLS

In the following sections, HOMER (Section 2.1), the
other homogenization tools (Section 2.2), and the input
data (Section 2.3) are described. 'Tool' here denotes a
homogenization software package (e.g., ACMANT,
Climatol and HOMER), 'method' denotes the application
of a tool with a fixed protocol and set of parameter values
(e.g., ACMANT and Climatol with their respective
default parameter settings, and HOMER-auto and
HOMER-inter) and 'function' denotes a procedure inside
a tool (e.g., detection, gap filling and correction methods
of the different software packages).

2.1 | HOMER

2.1.1 | Description

HOMER uses a combination of functions for detection of
homogeneity breaks (see Table 1; Figure 1). The detection
functions all use a subset of the network to detect inhomo-
geneities in each time series. The time series in focus is
henceforth referred to as the candidate series. The subset

of series which the candidate series is compared with are
called references. The references are chosen either on the
basis of geographical proximity or correlation. A threshold
value for the longest acceptable distance or the lowest
acceptable correlation and the minimum number of refer-
ences are set. In the current study the correlation thresh-
old is 0.95 and the minimum number of reference series is
eight (Kuya et al., 2020). There are four detection func-
tions. First, the pairwise detection function of PRODIGE
(Caussinus and Mestre, 2004) compares annual averaged
data of the candidate series with each of the reference
series one by one. Second, the pairwise detection function
is used on seasonal (winter and summer) data. Third, a
joint detection function from Picard et al. (2011) compares
the candidate series with all the reference series simulta-
neously. Fourth and final, a detection function called
'ACMANT' in Mestre et al. (2013) (as it is borrowed from
the ACMANT homogenization tool) includes detection of
seasonal cycle range inhomogeneities. In order to avoid
confusion between the ACMANT detection function and
the ACMANT homogenization tool, the detection function
is henceforth called the 'ACMANT-style detection func-
tion' and the homogenization tool is simple referred to as
'ACMANT'. The functions uses dynamic programming
(Bellman, 1954; Fisher, 1958) to fit a step function with a
given number of change points. The positions of the
change points are set to minimize the internal variance,
that is, the variance of the levels. A level here denotes the
time between two breaks or between a break and an end
point. The Caussinus and Lyazhri-criterion (Caussinus
and Lyazrhi, 1997), or in case of the joint-detection func-
tion, a modified Bayesian Information Criterion (BIC)
(Picard et al., 2011), is used to find the optimal number of
change points. The functions are further described in
Mestre et al. (2013). The results of the detection functions
are combined in a number of figures for examination by
the operator to reject or confirm suggested homogeneity
breaks station by station. The HOMER tool includes the
ANOVA-based (analysis of variance) correction and gap
fill function from Caussinus and Mestre (2004). ANOVA is
further explained in Lindau and Venema (2018).

Even though the input data has monthly resolution,
the detection functions detect breaks on annual basis.
HOMER is setup such that the breaks are assigned to
December of the year in consideration. To assign the
break its optimal placement on a monthly scale, a func-
tion borrowed from ACMANT is implemented. The so-
called 'change month' function, see Figure 1, can move
the homogeneity break ±24 months from the initial
placement (Mestre et al., 2013). Note that the intention of
this study is not to improve the core HOMER method;
therefore the seemingly arbitrary value of ±24 months
for the change month function is not modified. The

TABLE 1 The functions of HOMER/Bart

Function Description

Pairwise-
detection,
annual

Mean level homogeneity break detection
function from PRODIGE on annual
average data

Pairwise-
detection,
seasonal

Mean level homogeneity break detection
function from PRODIGE on seasonal
average data

Joint-detection Mean level homogeneity break detection
from the cghseg package Picard
et al., (2011)

ACMANT-style
detection

Seasonal cycle homogeneity break
detection function from ACMANT

Correction ANOVA based correction function
including gap filling

Change month Finds the optimal change point on
monthly scale from change points on
annual scale
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change month function can also merge multiple breaks
into a single break or split up a single break to multiple
breaks within this time frame.

2.1.2 | Procedure

The suggested work flow (Mestre and Aguilar, 2011;
Vertačnik et al., 2015; Coll et al., 2018; Kuya et al., 2020) is
depicted as a flow chart in Figure 1. First homogeneity
breaks are detected by applying the detection function in
the sequence pairwise annual-style, pairwise seasonal-
style, joint-style and ACMANT-style detection. Since the
ACMANT-style detection function needs pre-
homogenized data, the correction function is applied both
before and after the ACMANT-style detection function.
The process should be repeated (at least) once. Before the
final correction of the data series, it is recommended to
apply the change month function.

2.1.3 | Confirmation of homogeneity breaks

When HOMER was previously tested at SMHI a 'tradi-
tional' procedure for the confirmation or rejection of possi-
ble homogeneity breaks was adopted. The procedure is as
follows: For each year in each candidate series the number

of breaks reported by the pairwise-detection functions are
counted. The pairwise-detection functions compare the
candidate series with its reference series. For each year in
each candidate series, there can maximum be as many
breaks reported as the number of reference series. The
number of breaks reported by the seasonal function is
multiplied by 1

3. Breaks reported by the joint-detection
and the ACMANT-style detection functions are added to
the sum. If the sum adds up to four or more, the break is
confirmed. If the sum adds up to three, metadata is con-
sulted. If the considered break is supported by metadata
the break is confirmed. If metadata does not support the
considered break, the break is noted in a notebook. If the
same break is repeatedly noted, the break is confirmed.
Reported breaks in the previous or following year adds to
the candidate break, but with a penalty of one break sig-
nal. Breaks cannot be confirmed in consecutive years in
the same time series, which is a common restriction for
homogenization methods (Venema et al., 2020).

2.2 | Benchmark tools

2.2.1 | Climatol

The Climatol version used here is Climatol v3.1.2.
Climatol constructs standardized data series by using a

FIGURE 1 Flow chart of

HOMER [Colour figure can be

viewed at

wileyonlinelibrary.com]
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Reduced Major Axis linear regression (Clarke, 1980) on
the reference series, parallel to the candidate series
(Guijarro, 2018). The selection of references is based on
proximity only such that all series, even short series with
little or no temporal overlap with the candidate series,
can be included. The difference between the constructed
and the candidate series are used for detecting outliers
and homogeneity breaks. The homogeneity break detec-
tion is based on the SNHT method. The detection is per-
formed iteratively until no breaks larger than a certain
threshold is found.

2.2.2 | ACMANT

The ACMANT version used here is ACMANT v4.3
(Domonkos, 2019). As HOMER, ACMANT is based on
the PRODIGE homogenization method (Caussinus and
Mestre, 2004). Like Climatol and HOMER's joint detec-
tion function, ACMANT construct a composite reference
series from the selected references of each candidate
series but does not use the pairwise technique of
HOMER. The functions work on deseasonalized data, the
seasonal cycle is then added in the end of the process in
ACMANT. The selection of references is based of Spear-
man correlation and can vary from year to year. The
homogenization is performed in three iterations with
increasing sensitivity. ACMANT has numerous special
features: Detection of changes in seasonal cycles, ensem-
ble homogenization and weighted ANOVA model besides
the ordinary ANOVA correction model.

2.2.3 | Previous comparisons

A comprehensive evaluation of homogenization tools is
the 'European Cooperation in Science and Technology
Action ES0601: advances in homogenization methods of
climate series: an integrated approach' (COST-HOME)
project (Venema et al., 2012). Two of the evaluated tools
were Climatol and ACMANT. ACMANT had lower resid-
ual error and higher Probability of Detection (POD) than
Climatol. Climatol had higher Heidke Skill Score (HSS)
(Heidke, 1926) than ACMANT. HSS is designed to be
more sensitive to false positives than other skill scores
such as the Peirce Skill Score (Peirce, 1884). COST-
HOME was followed by the 'Multiple verification of auto-
matic software homogenizing monthly temperature and
precipitation series' (MULTITEST) project (Guijarro
et al., 2017). A series of tests with varying degree of com-
plexity was performed. ACMANT produced the lowest
RMSE for most of the tests. For the more simple tests the
RMSE of Climatol and ACMANT did not differ

significantly from each other. The automatic mode of
HOMER received as low RMSE as ACMANT for the sim-
pler tests but higher RMSE for the more complex tests.

From these two studies it can be concluded that
ACMANT's break detection is generally more sensitive
than Climatol's as ACMANT finds higher number of both
true and false breaks.

2.3 | Indecis benchmark data set

To quantitatively test the performance of HOMER and
compare it with the performance of Climatol and
ACMANT, a benchmark data set is required. In the pre-
sent study the Indecis benchmark Tmin and Tmax data sets
are used (Indecis Project, 2017; Guijarro, 2019). The Inde-
cis benchmark data sets consists of synthetic time series
with daily temporal resolution between 1950 and 2005
compiled from the KNMI's regional climate model
RACMO v2 (Indecis Project, 2017; Skrynyk et al., 2020)
to mimic the records of observational networks. In the
Indecis data set, there are two networks with virtual
weather stations (see Figure 2): A Slovenian network
with 30 time series (see Figure 2b) and a southern Swed-
ish network with 100 time series (see Figure 2c). Since
the aim of this study is to evaluate the general skill of
HOMER and the other tools (not only their skill with
Swedish climate) both available temperature data sets are
used. The data are distorted by inserting homogeneity
breaks and data gaps. The unhomogenized data with
inserted homogeneity breaks and data gaps is henceforth
denoted 'raw' data. 'True' data denotes the corresponding
data without inserted homogeneity breaks and data gaps.
The inserted breaks are referred to as 'actual breaks'
where they need to be distinguished from breaks
suggested by a method ('reported breaks'). Note that there
are no actual breaks in the sense of breaks in the true
data as the true data is supposedly completely homoge-
neous. Most stations have two or three actual breaks. The
maximum number of breaks in one series is seven. The
Indecis benchmark data sets used in the current study
allows us to study four temperature cases: Slovenian
Tmax, Swedish Tmax, Slovenian Tmin and Swedish Tmin.

The two networks have distinct characteristics: The
Slovenian network is less dense, have lower temporal
correlation and larger average error than the Swedish
network. The average number of breaks per time series
are about the same for all four cases. The mean variance
of the annual data is larger for the Slovenian (σ2tx=4:6�C2

and σ2tn=1:7�C2) than the Swedish network (σ2tx=1:0�C2

and σ2tn=1:5�C2), especially for Tmax. In the Swedish data
sets, the variance in the annual averaged data is slightly
higher for Tmin.
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3 | APPROACHES AND
EVALUATION

In the following sections, the development of the new
automated version of HOMER is described (Section 3.1),
followed by descriptions of the tests (Section 3.2) and
metrics (Section 3.3) that are used in the current study to
evaluate the different homogenization methods and
tools.

3.1 | Automation of the interactive mode
of HOMER

The interactive mode of HOMER is automated in a script
called Bart. The source code and a user manual of Bart is
included in the Appendix S1. The traditional procedure
described in Section 2.1.3 is translated into a point system
where each function is ascribed a weight factor (see
Figure 3). The weights and the thresholds are controlled
by parameter values. Decreasing threshold values or
increasing weights of the detection functions makes the
method more sensitive to homogeneity breaks. Breaks
described in the metadata records are treated like breaks
reported by the detection functions: The metadata breaks
are also ascribed a weight controlled by a parameter

value. The role of metadata in the homogenization pro-
cess can thus be chosen according to the quality of the
metadata (Venema et al., 2020). There are examples of
such differences in treatment of metadata in the litera-
ture; Kuya et al. (2020) restricts their validation of homo-
geneity breaks to those supported by metadata, while
Gubler et al. (2017) argues that metadata in their case
with a sparse network only should decide the exact place-
ment in time of statistically confirmed homogeneity
breaks. Alternatively to the traditional use of two itera-
tions, Bart can let HOMER's homogenization process
converge by repeating the process until no additional
breaks are reported.

This gives the user a number of input parameters, as
tabulated in Table 2. The use of inputs enables the Bart
script to run HOMER in batch mode, which has not been
possible previously (Guijarro et al., 2017).

A reoccurring problem when working with HOMER
on incomplete data series and when breaks are con-
firmed in later stages with gapfilled data, is the occur-
rence of levels with no original data. In such cases,
HOMER has, until now, required the interaction of the
operator to remove one of the breaks, also in the auto-
matic mode. This is automated in the Bart script: A
break after a level with no original data is removed
such that the level is merged with a later level. If the

(a)

(b) (c)

FIGURE 2 The distribution of the stations in the two networks. (a) The Indecis networks. (b) The Slovenian network. (c) The southern

Swedish network [Colour figure can be viewed at wileyonlinelibrary.com]
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last level does not have original data, the level is mer-
ged with the previous level.

3.2 | Homogenization of benchmark
data sets

3.2.1 | Preparation

The monthly data series used in this study are obtained
from the daily data values of the Indecis benchmark data
sets. In the Indecis benchmark data sets, parts of the data
is removed to mimic missing data. To fill the gaps in the

daily data linear temporal interpolation is used. If more
than 5 days are missing, the monthly value is considered
missing. Interpolation is not possible if data is missing in
the start or the end of the data series, or if the missing
data is part of a longer gap. If interpolation is not possi-
ble, the mean is calculated on the available days.

3.2.2 | Method comparison

The Indecis benchmark data sets for the four cases (Tmax

and Tmin for Slovenia and Sweden) are homogenized by
HOMER using the Bart script with settings corresponding

FIGURE 3 Depiction of the evaluation of a fictional potential homogeneity break in a certain year in a time series where the joint

detection function and the Acmant-style detection function reports a break, the pairwise detection function reports breaks for three

reference time series on annual basis and for five reference time series on seasonal basis, and the break is supported in the metadata. The

sum of break points exceeds the break threshold and, consequently the break is added to the list of homogeneity breaks [Colour figure can

be viewed at wileyonlinelibrary.com]

TABLE 2 The input parameters

and their set of values for the HOMER-

inter (Inter.), the HOMER-auto (Auto.)

homogenizations, the homogenization

with constant number of references

(Const. Ref.) and the convergence

homogenization (Conv)

Parameter Inter. Auto. Const. ref Conv.

Correlation threshold 0.95 0.95 1.00 0.95

Minimum number of reference series 8 8 8 8

Number of iterations 2 2 2 –

Convergence Off Off Off On

Pairwise-detection annual weight 3 0 3 3

Pairwise-detection seasonal weight 1 0 1 1

Joint-detection weight 3 1 3 3

ACMANT-style weight 3 1 3 3

Adjacent penalty 3 ∞ 3 3

Break validation threshold 12 1 12 12

Note threshold 9 – 9 9

Restricted time 1 0 1 1
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to the traditional use of the interactive mode (HOMER-
inter) and with settings corresponding to the automatic
mode (HOMER-auto). The settings for the two HOMER
methods are tabulated in Table 2. The data sets are also
homogenized by Climatol and ACMANT. Furthermore,
HOMER's correction function is applied on the raw data
with actual break positions and the default reference selec-
tion settings (0.95 correlation threshold, minimum eight
references). These results can be considered as an upper
limit for the score of HOMER with the current settings. To
assess the overall skill of the four homogenization methods
a number of metrics are calculated by comparing the
homogenized data with the true data or by comparing the
reported breaks with the actual breaks (see Section 3.3).

3.2.3 | Reference selection and
homogenization iterations

The use of the correlation threshold for the selection of
reference series means that the number of references can
vary between stations. The sensitivity of especially the
pairwise detection function could potentially vary
between stations within a network. Since homogeneity
breaks disturb the correlation between series, series with
fewer breaks require less climatological similarity
between them to be well correlated and can therefore be
ascribed more references. To assess the effect of the num-
ber of references for the homogenization of each station,
an alternative homogenization is conducted where the
references are the eight most highly correlated series for
each candidate (constant method).

Under the current settings of the minimum reference
correlation and minimum number of references, the
number of references varies between eight and 53 for the
stations in the Swedish data sets, see Figure 4a. In the
further analysis the stations are binned according to their
number of references in the default selection of the Swed-
ish Tmax data set. In the Slovenian data sets almost all sta-
tions have eight references. The Swedish Tmax case has a
wider spread of references than the Tmin case, hence the
sole focus on the Tmax case. To illustrate how the refer-
ence selection is influenced by the homogeneity of the
time series, the number of actual breaks in series is plot-
ted against the number of references as a bar plot i
Figure 4b. The average number of actual breaks generally
decreases for bins with increasing number of references.

To investigate the effect of the number of iterations in
HOMER's homogenization process, the Indecis data sets
are homogenized by repeating the process until no further
homogeneitybreaks are reportedby thedetection functions
(convergence). The results are comparedwith the results of

the operational method, which includes two homogeniza-
tions rounds. Skill scores (see Section 3.3.2) are then calcu-
lated after each correction of the process. Note that the
correction function is applied twice for each iteration.

The settings for the two alternative HOMER methods
(constant number of references and convergence) are tab-
ulated in Table 2.

3.3 | Metrics

Two groups of metrics are used in the current study:
Time series based metrics and skill scores. Time series
based metrics compare the output corrected series with
the true and the input raw time series. The skill scores
compare the lists of breaks reported by the method with
the list of actual breaks.

3.3.1 | Time series based metrics

In the following section xi,j,m and yi,j represents the
homogenized and the true value respectively. The sub-
script i refer to the time ti. The time vector spans from t0
to t(n−1). The subscript j refer to the identity of the time
series (i.e., weather station). The subscript m refer to
homogenization method. xj,m and yj represents the tem-
poral averages of the homogenized and true values of the
variable, respectively. m = raw refers to unhomogenized
data. The root mean square error (RMSE) is defined as:

RMSEj,m �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn−1

i=0ð Þ
xi,j,m−yi,j

� �2

vuut : ð1Þ

For the evaluation of homogenization methods, the
Centred Root Mean Square Error (CRMSE) is rec-
ommended over the ordinary RMSE, since 'the main aim
of homogenization is not to improve the absolute values
but rather the temporal consistency' (Venema
et al., 2012). CRMSE for the homogenization method
m is defined as:

CRMSEj,m �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn−1

i=0ð Þ
xi,j,m−xj,m
� �

− yi,j−yj
� �� �2

vuut ð2Þ

In addition, the bias B (mean departure from true
data) is calculated for both raw and homogenized data.

Bj,m � 1
n

Xn−1

i=0ð Þ
xi,j,m−yi,j

� �
: ð3Þ
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To evaluate the residual error relative to the raw error,
the measure of efficiency E is used (Domonkos, 2013b;
Gubler et al., 2017):

Ej,m �RMSEj,raw−RMSEj,m

RMSEj,raw
ð4Þ

Where the error is to be evaluated station by station,
the raw error is in some cases small or even zero. In such
cases the efficiency measure is inapplicable and instead
error reduction is used:

Error reductionj,m �RMSEj,raw−RMSEj,m: ð5Þ

When homogenizing real observational data, the cor-
rect solution is not known. Every correction of raw data
aims to bring the time series closer to the true values, but
risks of adding error to the series. It is, therefore, prefera-
ble to achieve as low residual error as possible with the
smallest correction possible. The mean absolute correc-
tion is calculated:

Mean absolute correctionj,m � 1
n

Xn−1

i=0ð Þ
abs xi,j,raw−xi,j,m

� �� �

ð6Þ

The time series metrics are given as averages over a
network with k time series:

Am=
1
k

Xk
j=1

Aj,m ð7Þ

where, A is any metric. The time series metrics are calcu-
lated on the nongap filled data such that all methods and
the raw data are easily compared and such that all met-
rics are calculated on the same data.

3.3.2 | Skill scores

A detection function has two tasks: Find as many true
homogeneity breaks as possible and report as few false
positives as possible (Van Malderen et al., 2020). Differ-
ent skill scores have been adopted to capture both these
skills in a single score (Menne and Williams Jr, 2005,
2009; Venema et al., 2012; Domonkos, 2013a). In the cur-
rent study, the two skills are kept separate in two metrics:
Probability of Detection (POD) and Probability of Hit
(POH). The two metrics clearly describes the characteris-
tics of the different methods. The two metrics are calcu-
lated from three measures: True positives, a, refer to the
number of years where actual breaks are detected. False
positives, b, refer to the number of years where breaks
are falsely reported. False negatives, c, refer to the num-
ber of years where actual breaks are undetected. In this
study a break is considered to be detected if it is ±2 years
from an actual break (Menne and Williams Jr, 2009).
This margin is consistent with the HOMER change
month function. POD is defined as:

POD�
P

true positiveP
year with actual break

=
a

a+c
ð8Þ

The POH is defined as:

POH�
P

true positiveP
year with reported break

=
a

a+b
: ð9Þ

Within a conservative approach to the homogeniza-
tion of observational data, it is most important to correct
the breaks with large amplitude. To test how well the
methods detect the largest breaks, the probability of
detection of the largest breaks is calculated. PODlarge

describe the probability of detection considering only the
25% largest actual breaks.
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3.3.3 | Confidence intervals

95% confidence intervals for all the metrics are calculated
with the bootstrapping method (Efron, 1992). The boo-
tstrapping method generates a set of values for a metric
and calculates the 95th percentile of the set. The set is gen-
erated by drawing a large number of random samples from
the input data and calculate the metric from each sample.
The size of the samples are equal to the size of the input
data. There will be a number of duplicates in each sample,
which gives the set its variation. In this study, the input
data is the combined time series from all the stations of a
case. In the skill score metrics the input data is the a, b and
c time series, which all will have a binomial value per year.

Since the Slovenian and the Swedish networks differ in
size, the averages over the four cases are calculated with
uncertainty propagation (Kircher, 2001). The uncertainty
of the average σ, is calculated over the cases i � [1, N] as:

σ=

ffiffiffiffiffiffiffiffiffiffiffi
PN
i=1

σ2i

N

vuuut
ð10Þ

where, σi is the uncertainty of case i for the metric in
question.

4 | RESULTS

4.1 | Comparison of methods

The time series based metrics of four homogenized cases
by the different methods are presented as bar plots in
Figure 5 and tabulated in Table 3. The four cases are the
monthly average Tmax and Tmin of the Slovenian and the
Swedish Indecis benchmark network's data sets. The cor-
rection of the actual breaks by HOMER with the default
settings are also included. Nongap filled data are used.

The CRMSE scores of ACMANT, HOMER-inter and
HOMER-auto are equivalent within the 95% confidence
interval for all the cases except the Swedish Tmin where
HOMER-auto has a higher CRMSE than the other two
methods. Averaged over the four cases, the CRMSE
scores of ACMANT and HOMER-inter are
0.69�C ± 0.01�C, the average CRMSE score of HOMER-
auto is 0.70�C ± 0.01�C. Climatol has the highest average
CRMSE (0.73�C ± 0.01�C), but scores equivalent to most
of the other methods for all cases except the Swedish
Tmax. Correction of actual breaks in HOMER result in an
average CRMSE score of 0.65�C ± 0.01�C, which can be
considered an upper limit for the skill of HOMER
methods under the current settings. All four methods

show CRMSE scores slightly higher than that implying
that there is potential for some further refinement in the
detection algorithms.

On average, the absolute values of the biases of the
homogenizations are 0.02�C ± 0.01�C or smaller, with
the exception of HOMER-auto (+0.04�C ± 0.00�C). The
bias of the raw data is +0.05�C ± 0.01�C. The average
bias of HOMER-auto includes the highest bias of all the
methods and cases (the Slovenian Tmax case:
+0.13�C ± 0.01�C).

Climatol that has the smallest mean absolute correc-
tion with 0.71�C ± 0.01�C, followed by HOMER-inter
with 0.73�C ± 0.01�C. ACMANT has the mean absolute
correction 0.75�C ± 0.01�C and HOMER-auto
0.77�C ± 0.01�C, which is the largest mean absolute cor-
rection. The absolute corrections are larger for the
Slovenian network than for the Swedish network. The
extent of corrections follow the number of breaks as
shown below.

The ranking of the methods efficiency varies between
the cases, but on average ACMANT and HOMER-inter
has the highest efficiency (48.0 ± 0.04% and 47.6 ± 0.04%,
respectively), followed by HOMER-auto (45.9 ± 0.04%).
Climatol has the lowest efficiency in all cases except for
Swedish Tmin, albeit not always significantly within the
95% confidence interval. Climatol's average efficiency of
43.7 ± 0.04% includes the lowest efficiency value of all
methods and cases (the Swedish Tmax case: 23.3 ± 0.06%).

For a measure of the distribution of error beyond the
averages, the integer absolute error percentiles between
0 and 100 for the methods are plotted against the
corresponding integer absolute error percentiles of the
raw data for the four cases in Figure 6. The absolute error
is defined as the absolute differences between the homog-
enized and the true values. None of the methods could
perfectly recreate the true data. The absolute difference
in error percentiles of all methods are smaller than 0.3�C
for all percentiles below, and including, the 99th
percentile.

POD, POH, PODlarge and the number of reported
breaks relative to the number of true breaks are pres-
ented as barplots in Figure 7 and tabulated in Table 4.
POD and POH as a function of relative number of
reported breaks are plotted as scatterplots in Figure 8.

The methods group in a pair reporting less homoge-
neity breaks (Climatol and HOMER-inter), and a pair
which reports more (ACMANT and HOMER-auto). Fur-
thermore, it can be concluded that higher number of
reported breaks raise POD, but lower POH, see Figure 8.
A method that reports more breaks probably finds both
more true breaks and more false breaks. Climatol consis-
tently reports both the lowest number of breaks and the
highest POH (on average 0.95 ± 0.02). ACMANT
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consistently reports the highest POD (0.74 ± 0.03), and in
two of the four cases, also the highest number of breaks.
HOMER-auto has the lowest POH (0.53 ± 0.03) and
reports on average twice the number of breaks reported
by Climatol and similar number of breaks as ACMANT
for the four cases. HOMER-inter has the second highest
POH (0.75 ± 0.04). HOMER-inter also has the second
highest POD (0.62 ± 0.04) together with HOMER-auto
(0.64 ± 0.04).

The extent of correction follows the number of breaks
reported: Climatol has the smallest average correction
and the smallest total number of breaks over the four
cases (387 breaks, not shown), followed by HOMER-inter
which has the second smallest average correction and the
second smallest number of total breaks (570). ACMANT,
which has the second largest average correction, has the
second highest total number of breaks (726). HOMER-
auto which has the largest average correction also has
the largest number of total breaks (773).

The pattern is similar for the large breaks: ACMANT
has the highest PODlarge (0.85 ± 0.05), followed by
HOMER-auto and HOMER-inter (0.76 ± 0.06 and
0.74 ± 0.06, respectively). Climatol has the lowest
PODlarge (0.67 ± 0.06). In relative terms, the methods

finds equal number of large breaks within the confidence
intervals.

4.2 | Reference selection

The number of actual breaks reported by the operational
method and the constant method is presented in
Figure 9a. The operational method reports more breaks
than the number of actual breaks for series with up to
two actual breaks. The constant method reports no
breaks for series with no actual break and on average one
break for series with one actual break. On average, the
operational method reports more breaks than the con-
stant method for series with any number of actual
breaks.

The average relative number of breaks (reported
breaks per actual break) in series binned according to the
number of references (in the operational method) is pres-
ented in Figure 9b for the methods applied on the Swed-
ish Tmax case. On average, the operational method
reports more than two breaks per actual break in series
with more than 35 references, whereas in the series with
eight references the operational method reports less than
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one break per actual break. In the constant method the
same series have about the same number of reported
breaks per actual break.

The error reduction, correction, POH and POD ver-
sus the number of actual breaks in each station of the
Swedish Tmax data set as homogenized by the opera-
tional and constant methods are presented as bar plots
in Figure 10. The error reduction and correction are not
significantly different between the two methods for
series with any number of actual breaks, except for the
series with no actual break. The operational method has
negative, significantly nonzero, error reduction for the
series with no actual break and significant nonzero correc-
tion, while the constant method has no error reduction or
correction. The operational method shows decreasing
POH for series with decreasing number of actual breaks.

The constant method shows no significant trend of POH
for series with decreasing number of actual breaks. For
series with more than three actual breaks, there is no sig-
nificant difference between the methods. POD is higher
for the operational method for series with most number of
actual breaks, albeit not significantly within the 95% confi-
dence interval.

4.3 | Number of iterations in HOMER

The methods' skill scores after each correction in the
homogenization processes with and without the conver-
gence option are plotted in Figure 11. The applications of
the change month function in the end of the process are
indicated in the figures.

TABLE 3 CRMSE, biases, mean

absolute corrections and efficiency in

the homogenization of the monthly

averages of the daily maximum (tx) and

minimum temperatures (tn) of the

Slovenian (Si) and the Swedish

(Se) Indecis benchmark network's data

sets by HOMER-auto, HOMER-inter,

Climatol and ACMANT

Method CRMSE/0.1�C Bias/0.1�C Corr/0.1�C E/%

Tmax, Slovenia

Raw 20.9 ± 0.3 1.6 ± 0.3

HOMER-auto 8.3 ± 0.2 1.3 ± 0.1 15.5 ± 0.2 66.0 ± 0.6

HOMER-inter 8.4 ± 0.2 0.3 ± 0.1 15.0 ± 0.2 66.0 ± 0.6

CLIMATOL 8.4 ± 0.2 0.1 ± 0.1 14.8 ± 0.2 65.9 ± 0.6

ACMANT 8.4 ± 0.2 0.2 ± 0.1 15.2 ± 0.2 66.0 ± 0.6

True-breaks 7.6 ± 0.2 − 0.0 ± 0.1 15.6 ± 0.2 69.1 ± 0.6

Tmax, Sweden

Raw 7.4 ± 0.1 − 0.3 ± 0.1

HOMER-auto 5.0 ± 0.1 − 0.3 ± 0.0 3.6 ± 0.0 37.0 ± 0.6

HOMER-inter 4.9 ± 0.1 − 0.1 ± 0.0 3.4 ± 0.0 37.7 ± 0.6

CLIMATOL 6.0 ± 0.1 − 0.3 ± 0.0 3.0 ± 0.0 23.3 ± 0.6

ACMANT 5.0 ± 0.1 − 0.1 ± 0.0 3.6 ± 0.0 36.5 ± 0.5

True-breaks 4.5 ± 0.1 − 0.0 ± 0.0 4.1 ± 0.0 43.2 ± 0.6

Tmin, Slovenia

Raw 13.2 ± 0.2 1.1 ± 0.2

HOMER-auto 8.5 ± 0.2 0.2 ± 0.1 7.0 ± 0.1 42.2 ± 1.0

HOMER-inter 8.4 ± 0.2 0.3 ± 0.1 6.2 ± 0.1 42.3 ± 1.0

CLIMATOL 8.7 ± 0.2 − 0.4 ± 0.1 5.9 ± 0.1 40.2 ± 1.0

ACMANT 8.5 ± 0.2 − 0.3 ± 0.1 6.4 ± 0.1 42.3 ± 1.0

True-breaks 8.1 ± 0.2 − 0.1 ± 0.1 6.9 ± 0.1 45.1 ± 1.1

Tmin, Sweden

Raw 9.5 ± 0.1 − 0.5 ± 0.1

HOMER-auto 6.5 ± 0.1 0.6 ± 0.0 4.9 ± 0.1 38.4 ± 0.9

HOMER-inter 6.0 ± 0.1 − 0.1 ± 0.0 4.5 ± 0.1 44.5 ± 0.7

CLIMATOL 5.9 ± 0.1 − 0.1 ± 0.0 4.6 ± 0.1 45.1 ± 0.6

ACMANT 5.8 ± 0.1 − 0.1 ± 0.0 4.7 ± 0.1 47.0 ± 0.7

True-breaks 5.7 ± 0.1 − 0.2 ± 0.0 4.8 ± 0.1 47.9 ± 0.7

Note: Also included is the HOMER correction function applied on the actual breaks. The uncertainty ranges

are the 95% confidence interval calculated with the bootstrap method. Only non-missing data are included.
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The differences between the operational and convergence
run are not statistically significant within the 95% confidence
interval. POD and number of reported breaks increase when
the process is allowed to converge. POH, on the other hand,
decrease. POD usually increases more than POH decreases.
The change month function increases POH and affects only
POD in one case. The effect of the change month function is
indicated by the difference between the dashed and the solid
lines at correction round 4, where the function is applied on
the operational run, but not the convergence run.

5 | DISCUSSION

5.1 | Data and tools

5.1.1 | Benchmark data set

The usefulness of synthetic benchmark data sets
for the evaluation of homogenization methods is an
open question. It is, for example, uncertain how
closely the synthetic homogeneity breaks resemble

TABLE 4 POH, POD, the

probability of detection of the breaks in

upper quartile (PODlarge) and the

number of reported breaks (Brks) in the

homogenization of the monthly

averages of the daily maximum (tx) and

minimum temperatures (tn) of the

Slovenian (Si) and the Swedish (Se)

Indecis benchmark network's data sets

by HOMER-auto, HOMER-inter,

Climatol and ACMANT

Method POH POD PODlarge Brks

Tmax, Slovenia 78

HOMER-auto 0.55 ± 0.08 0.77 ± 0.08 1.00 ± 0.00 109

HOMER-inter 0.79 ± 0.08 0.74 ± 0.08 1.00 ± 0.00 73

CLIMATOL 0.95 ± 0.05 0.73 ± 0.08 0.95 ± 0.09 60

ACMANT 0.58 ± 0.08 0.85 ± 0.07 1.00 ± 0.00 113

Tmax, Sweden 280

HOMER-auto 0.59 ± 0.05 0.59 ± 0.05 0.64 ± 0.10 278

HOMER-inter 0.64 ± 0.05 0.62 ± 0.05 0.71 ± 0.09 270

CLIMATOL 0.92 ± 0.04 0.47 ± 0.05 0.43 ± 0.10 143

ACMANT 0.73 ± 0.04 0.71 ± 0.05 0.76 ± 0.09 272

Tmin, Slovenia 69

HOMER-auto 0.44 ± 0.09 0.62 ± 0.10 0.72 ± 0.19 96

HOMER-inter 0.78 ± 0.10 0.57 ± 0.10 0.67 ± 0.20 50

CLIMATOL 0.98 ± 0.05 0.60 ± 0.10 0.72 ± 0.19 42

ACMANT 0.63 ± 0.09 0.72 ± 0.09 0.89 ± 0.14 78

Tmin, Sweden 258

HOMER-auto 0.53 ± 0.05 0.60 ± 0.05 0.68 ± 0.10 290

HOMER-inter 0.79 ± 0.05 0.54 ± 0.05 0.57 ± 0.10 177

CLIMATOL 0.96 ± 0.03 0.53 ± 0.05 0.57 ± 0.10 142

ACMANT 0.66 ± 0.05 0.67 ± 0.05 0.77 ± 0.09 263

Note: The uncertainty ranges are the 95% confidence interval calculated with the bootstrap method.
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real ones. Recent studies have used benchmark data
sets based on real observational data (e.g., Squintu
et al., 2020). The existence of true homogeneous
solutions makes synthetic benchmark data sets to still
be a good option.

The results are, however, not necessarily directly
transferable to observational data sets. The characteristics
of the benchmark data sets and the observational data set
must be considered: Spatial density and the fraction of
missing data are two important characteristics. The tem-
poral heterogeneity of data availability is another impor-
tant characteristic (i.e., how much of the data that is
missing early or late in the series and how long typical
gaps are).

Any possible influence of differences of climate in
Sweden and Slovenia is probably subdued with the use
of annual data. There is no correlation between variance
of the annual averaged data and the detection skill.
Pearson's correlation coefficients between skill scores
and variance on station level are close to zero
(ρPOD = 0.05 and ρPOH = −0.1) for all the cases
combined.

5.2 | Test results

5.2.1 | Method comparison

On average, the four methods produce similar homoge-
nized data series. The average CRMSE of all the homoge-
nized series are small. The difference between ACMANT
and Climatol CRMSE is smaller than in the results of
Venema et al. (2012). Especially ACMANT has a higher
CRMSE in the results of the current study than in Ven-
ema et al. (2012). Our results compares qualitatively well
with Guijarro et al. (2017) who reported small differences
in RMSE between automatic HOMER, Climatol and
ACMANT for tests resembling the Indecis benchmark
data sets. Gubler et al. (2017) found in their study interac-
tive HOMER to have lower CRMSE than automatic
HOMER both for a dense and a sparse network of Swiss
observational time series. The implications of these
results for the results of the current study are however
difficult to evaluate since interactive HOMER applied on
the dense network, with metadata support, was defined
as the true solution.
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FIGURE 11 POH, POD and

number of breaks found as a fraction

of the number of actual breaks

(breaks) of the homogenized mean of

daily maximum and minimum

temperatures data of the Slovenian

and Swedish Indecis data sets at each

point of correction for HOMER-inter

with the default settings (two full

homogenization rounds) and the

convergence option turned on, the

shaded areas present the 95%

confidence interval. Note that each

homogenization round includes two

correction steps. The point of the

change month function is indicated

with black vertical lines. (a) The daily

maximum temperature, Slovenian

network. (b) The daily maximum

temperature, Swedish network.

(c) The daily minimum temperature,

Slovenian network. (d) The daily

minimum temperature, Swedish

network
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For most cases, most of the methods successfully cor-
rect also the time series with the highest residual errors
(see Figure 6). The correction of the methods correlates
with the error in the raw data: large error in the raw data
results in large corrections. Also the measure of efficiency
follows the pattern of error in the raw data for the differ-
ent cases; methods reduce the error more effectively in
cases where the raw data error is large.

POD follows the number of reported breaks in most
cases, while POH decreases for increasing number of
breaks. POD values are higher than in the results of Ven-
ema et al. (2012) for both Climatol and ACMANT. How-
ever, the definition of true positive (i.e., the tolerance
time) is not explicitly stated in Venema et al. (2012).
Other studies have used shorter tolerance time than what
is used in the current study (Vertačnik et al., 2015; Van
Malderen et al., 2020).

Similar to the results of the current study, Pérez-
Zan�on et al. (2015) concluded that ACMANT, compared
with the interactive mode of HOMER, detected more
homogeneity breaks in 90% of the 44 temperature time
series used in their study. On average, ACMANT detected
about 50% more breaks than HOMER. In the current
study, ACMANT detects on average 40% more breaks
than HOMER-inter. Furthermore, Pérez-Zan�on
et al. (2015) concluded that HOMER detected more of the
homogeneity breaks listed in metadata than ACMANT.
The average POD (based on metadata breaks) of HOMER
was 0.82, as defined by Equation (8). ACMANT's average
POD was 0.35.

In Vertačnik et al. (2015), HOMER in automatic
mode generally found more homogeneity breaks than
HOMER in interactive mode, which agrees well with the
results of the current study. About two-thirds of the
breaks detected by HOMER in automatic mode was
supported by metadata, corresponding to a POD (based
on metadata breaks) between 0.6 and 0.7. The runs with
HOMER in interactive mode resulted in POD-values
ranging from 0.86 to 1.0.

The high POD for HOMER in interactive mode rela-
tive to ACMANT in Pérez-Zan�on et al. (2015) and
HOMER in automatic mode in Vertačnik et al. (2015)
compared with the results of the current study can possi-
bly be explained by the fact that the operator of HOMER
in both studies had a priori knowledge of the metadata
breaks. In Bart, there is a possibility to include informa-
tion from metadata, but it is not utilized in the current
study. Moreover, a metadata break does not necessarily
cause a homogeneity break, which might subdue POD of
the automatic methods.

HOMER-inter reports more breaks in Tmax data than
in Tmin data. This is reflected in POD and POH skill
scores. The difference is not as pronounced in the other

methods, though all methods report more breaks for Tmax

than Tmin in the Slovenian data. If this is a systematic
problem in HOMER-inter is not possible to determine
from the current results alone.

The time series based metrics vary more between the
cases than between the methods, while the skill scores
vary significantly between the methods (see Figure 7).
HOMER-inter can be considered quite close to the upper
limit of the skill of HOMER methods, such that any fur-
ther substantial average error reduction requires more
than tuning the detection functions parameters. The skill
can probably be enhanced in specific situations.

The evaluation of homogenization methods should
not be limited to the ability to minimize the error of the
raw data. Homogenization can be considered to be an
asymmetric problem: It is most desirable to have the data
correctly homogenized, but if this is not achieved, it is
more desirable to keep the data unmodified than to have
a homogenization that is even slightly false. Similarly, if
data is improved on average, it still can be deteriorated
locally. Modifications that bring the data further from the
true values cannot simply be offset by modifications that
bring the data closer to the true values somewhere else.
When correcting observational data, the true values are
not known. All modifications of data might bring the
data further from the true values, and hence risk of
adding noise to the data. The risk is larger when exten-
sive modifications are done. Therefore can a conservative
method (such as Climatol) arguably be preferred over a
method more prone to modify the data (such as
ACMANT), even if it's residual error in the homogeniza-
tion of benchmark data is larger.

5.2.2 | Reference selection

The traditional use of HOMER includes the use of a cor-
relation based criterion for selection of reference series.
The number of references can vary substantially between
the series within a network. Figure 4b reveals a connec-
tion between the number of references and the number
of actual breaks. There is a risk of overhomogenizing rel-
atively clean series, since there are more reported breaks
than actual breaks for the homogenization of stations
with many references, see Figures 9 and 10. When the
number of references are set to be constant, POH and
POD are less sensitive to the number of actual breaks in
the data.

There is no significant effect of varying the number of
references on the error reduction and correction, except
for the series with no actual breaks. For most reference
bins, the use of a constant number of references does not
discard vital information, since the error reduction and
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POD is not significantly higher in the operational
method. The error in the series with higher number of
references is not reduced significantly more than in series
with fewer references, contrary to what is expected. The
error reduction instead drops for higher number of refer-
ences, indicating that the effect of higher correlation
between relatively clean stations dominates over the
detection functions benefiting from the use of more refer-
ences. This is also supported by the decreasing correction
for higher number of references and the small differences
between the selection methods.

It remains unclear why also POD drops for increasing
number of references. An option introduced in the Bart
script is to let the pairwise detection function normalize
the number of references for each candidate series, where
the number of references exceeds a certain threshold.
Tests conducted with this option (not shown) gives on
average equivalent results to the operational method.
However, for series with a large number of references,
the too generous confirmation of breaks in the opera-
tional method is overcompensated, such that POD drops
more than in the operational and constant methods.

Another option is to use a proximity-based criterion
for the selection of references (Coll et al., 2018), where all
stations within a certain radius are selected as references.
Tests conducted show the average CRMSE to be slightly
reduced, especially for the Slovenian network (not
shown). The skill scores are, on the other hand, slightly
decreased. Reference selection with the proximity-based
criterion requires the network to be climatologically
homogeneous. It might not be suitable for networks
including, for example, mountainous or archipelagic
regions. The optimal settings for the selection of refer-
ences need to be further investigated.

6 | CONCLUSION

A new automated version of the well-established homog-
enization tool HOMER has been developed. As opposed
to the standard automatic version of HOMER, which
only uses a part of the HOMER tool, the new version uses
the full HOMER tool and can be customized to the user's
needs. This development simplifies operational use and
enables systematic testing of the full HOMER tool.
Homogenization methods using the new automated ver-
sion of HOMER has been evaluated by assessing different
datasets for different variables. The methods represents
the interactive mode (HOMER-inter) and the automatic
mode of HOMER (HOMER-auto). Results have also been
compared with results of other homogenization methods
(using the tools Climatol and ACMANT).

The most important findings are:

• HOMER-inter produces homogenized time series with
lower (or comparable) residual error compared with
HOMER-auto, but with less modification of the input
raw time series.

• The overall performance of HOMER-inter, compares
well with Climatol and ACMANT.

• All the homogenization methods produce homoge-
nized time series with significantly smaller deviation
from the true data values compared with the raw time
series.

• Regarding modification of data, HOMER-inter can be
seen as a compromise between ACMANT, that mod-
ifies the data more, and Climatol, which is more
conservative.

• The number of references and the reference selection
method should be carefully considered when using
HOMER.

• The practice of running two homogenizations rounds
with HOMER is supported in this study as the proba-
bility of detection is not significantly increased with
further rounds.

The results of the current study suggest that the
choice of homogenization method is a matter of prefer-
ence. It should, however, be stressed that both the new
automation of HOMER and Climatol has extensive possi-
bilities to change parameters which very well might
change their respectively profiles. Such investigations are
beyond the scope of this study.

7 | OUTLOOK

The Bart-script is still under development. A number of
new features (including parallel computing and an
improved reference selection function) are implemented
in versions following the version used in the current
study.

Homogenization of the Swedish observational net-
work's monthly average temperature data set is currently
ongoing. The results will constitute a future publication,
including a comparison with the previous homogeniza-
tion performed with SNHT.
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