
1. Introduction
Marine aerosol is one of the most abundant aerosol types in the atmosphere (Boucher, 2015). It consists 
mainly of more or less hydrated sea-salt particles as well as biological material (Boucher, 2015; Patterson 
et al., 2016; Zieger et al., 2017). The aerosol is emitted into the atmosphere by bursting air bubbles in the 
oceans and by wind tearing off wave crests (Boucher, 2015). Sea water (e.g., Wells, 2011) contains a mix-
ture of different salts in solution, which is dominated by sodium chloride (NaCl) (Chi et al., 2015; Irshad 
et al., 2009; King et al., 2012; Pósfai et al., 1995; Tang et al., 1997; Ueda et al., 2014).

Marine aerosol provides large surface areas for heterogeneous chemical reactions. It further influences the 
climate both directly and indirectly, namely, by directly scattering radiation (Buseck & Pósfai, 1999; King 
et al., 2012; Murphy et al., 1998), and by acting as cloud condensation nuclei, hence impacting cloud reflec-
tivity and precipitation (Boucher, 2015). Furthermore, sea-salt aerosol plays an important role in corrosion 
processes of metals and reinforced concrete structures in coastal areas (Meira et al., 2008).

Large-scale transport models typically contain sea-salt modules that describe the generation, hydration or 
dehydration, transport, and deposition of marine aerosol (e.g., Foltescu et al., 2005). Evaluation of such 
models requires the use of long-term data sets with global coverage, which can be obtained from remote 
sensing observations. The analyses of remote sensing observations, in turn, require a thorough understand-
ing of the connection between aerosol microphysical properties and optical properties.

Especially in the tropics crystalline sea-salt aerosol can play significant role. The tropical troposphere is 
commonly characterized by the trade wind inversion, which has a lower boundary within the lowest 2 km. 
The trade wind inversion does not necessarily coincide with the top of the atmospheric boundary layer, 
as discussed by Carrillo et al. (2016) and references therein. Within this inversion layer, the moisture con-
tent rapidly decreases, so that the troposphere above that inversion layer is extremely dry (Krishnamurti 
et al., 2013). Aerosol lifted into or above the inversion layer dries out; as a consequence, sea-salt aerosol 
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particles may crystallize as proposed by Haarig et  al.  (2017). But even measurements performed in ex-
tra-tropical latitudes indicate the potential presence of dried sea-salt aerosol (Sakai et al., 2000).

Dried sea-salt particles come in cubical or cuboidal shapes, or in shapes deviating slightly from such a 
reference shape, as images of particle samples indicate (Gwaze et  al.,  2007; King et  al.,  2012; McInnes 
et al., 1994; Patterson et al., 2016; Peart & Evans, 2011; Zeng et al., 2013). Measurements of the dynamic 
shape factor of artificial sea salt, reported by Zieger et al. (2017), indicate aspherical, cube-like shapes. Less 
common are irregular shapes, which were reported by Sakai et al.  (2010); Peart and Evans (2011); Zeng 
et al. (2013). The shape of salt crystals differs for different salts (Pósfai et al., 1995; Wise et al., 2005). In case 
of mixtures, such as sea salt, already small amounts of non-NaCl components can alter the shape of the sea-
salt aerosol particles compared to pure NaCl crystals (Zieger et al., 2017). Thus, the chemical composition 
of sea-salt aerosol particles influences both the particle shape and the dielectrical properties, both of which 
impact the optical properties.

The optical properties, and more specifically the linear depolarization ratio of sea-salt aerosol particles have 
previously been measured in laboratory studies and during lidar field observations. Lab measurements of 
the linear depolarization ratio in the near-backscattering direction of pure NaCl crystals yielded values of 
δl,179° = 21% at 532 nm wavelength (Sakai et al., 2010), and δl,178° ≈ 25% at 488 nm (Järvinen et al., 2016). For 
crystalline sea salt at 532 nm, a value of δl,179° = 8% was reported (Sakai et al., 2010). Further, the depolari-
zation ratio is dependent on the relative humidity (RH) of the ambient air. At 632.8 nm values of δl ranging 
from 5.6%–11.1% for 77% < RH < 92% and δl ≈ 20% for RH < 12% for NaCl particles in a lab environment 
have been reported in the near-backscattering direction, that is, ϑ > 177° (Cooper et al., 1974).

While there are various lidar field observations of marine or sea-salt aerosol, there are only a limited num-
ber of reported measurements of the linear depolarization ratio in combination with reported values of the 
relative humidity. The combination of measuring the linear depolarization ratio of marine aerosol particles 
and the relative humidity in the same layer can indicate the presence of dried sea-salt aerosol particles. In 
Table 1, values of linear depolarization ratio δl and extinction-to-backscatter ratio Sp at 532 nm obtained 
from lidar field measurements of dried marine aerosol are shown. The classification as marine aerosol is 
taken from each reference and usually based on backward trajectory analyses.

Sea-salt aerosol particles grow with increasing relative humidity by water vapor condensing onto the crystal 
(Shettle & Fenn, 1979). The crystal gets increasingly dissolved by the condensed water. If the deliquescence 
point, which for sea-salt crystals is at a relative humidity of approximately 70%–74% (Tang et  al.,  1997; 
Zieger et al., 2017), is reached, the salt crystal becomes fully dissolved in a liquid droplet. A liquid droplet 
containing dissolved sea salt remains liquid until the relative humidity is below 45%–50% (Tang et al., 1997; 
Zieger et al., 2017), at which point the salt recrystallizes. Between values of the relative humidity of ∼50 and 
∼70% both crystalline, aspherical and dissolved, spherical sea-salt aerosol particles may coexist as a conse-
quence of this hysteresis effect. Therefore, aerosol layers with reported values of relative humidity below 
50% (Zieger et al., 2017) are considered to be dried and hence crystalline.

The values reported by Sakai et al. (2000) should be taken with a grain of salt, as they can be partially con-
taminated by continental aerosol particles. For the measurements conducted on the Atlantic Ocean near 
Cape Town (Bohlmann et al., 2018), two values of RH were reported. The value of RH ≈ 50% was obtained 
by a radiosonde and the value of RH < 40% was taken from the Global Data Assimilation System (GDAS1). 
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Location δl (%) Sp (sr) RH Reference

Husbands, Barbados 14.8 ± 3.5 25 ± 3 40% Haarig et al. (2017)

Atlantic Ocean (near Cape Town) 9 13 ± 3 <40% (50%) Bohlmann et al. (2018)

Atlantic Ocean (west of Western Sahara) 8 – ∼10% Yin et al. (2019)

Tokyo, Japan 10 – <50% Murayama et al. (1999)

Hagoya, Japan 10–20 – 25%–45% Sakai et al. (2000)

Table 1 
Depolarization Ratios δl and Extinction-to-Backscatter Ratios Sp of Dried Sea-Salt Aerosol Particles From Lidar 
Measurements at 532 nm and the Corresponding Relative Humidity (RH) of the Aerosol Layer
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Values of δl up to 11% for marine aerosol as reported by Groß et al. (2013) indicate the presence of dried 
sea-salt particles, however, the lack of reported RH measurements makes it difficult to assess this. For a 
relative humidity of RH > 80% values of the linear depolarization ratio of 6%–7% were reported by Sakai 
et al. (2012). Based on these field observations as well as the laboratory experiments, linear depolarization 
ratios of up to 20%–25% and extinction-to-scatter ratios of up to 25 sr particles can be considered plausible 
for dried (sea) salt aerosol.

The values of the near-backscattering linear depolarization ratio for pure, crystalline NaCl reported from 
laboratory measurements by Cooper et al. (1974); Sakai et al. (2010); Järvinen et al. (2016) (note that the 
measurements by Cooper et al. (1974); Järvinen et al. (2016) were not performed at λ = 532 nm) are larger 
than the depolarization ratio for crystalline sea salt, as reported from both laboratory measurements (Sakai 
et al., 2010) and from most lidar field observations listed in Table 1. The images of the salt particles, analyz-
ed by Sakai et al. (2010), indicate that sea-salt particles have an irregular, non-cubical shape, whereas pure 
NaCl particles have regular geometries with sharper edges. The laboratory measurements for pure NaCl 
with a mode radius of r = 0.12 μm could be reproduced using cubes with an effective radius of reff = 0.5 μm 
(Sakai et al., 2010). By modeling size averaged linear depolarization ratio, it was found, that cubes, following 
the same size distribution as the measurements, underestimate the measured depolarization ratio (Bi, Lin, 
Wang, et al., 2018) by about a factor of 2.

Compared to mineral dust and soot aerosol (see e.g., the studies by Nousiainen and Kandler (2015); Kah-
nert and KanngieSSer  (2020) and references therein) the approaches to modeling optical properties of 
sea-salt particles are less studied. Sea-salt aerosol particles have been modeled by using spheres (Chamail-
lard et al.,  2006) and cubes (Chamaillard et al.,  2006; David et al.,  2013; Haarig et al.,  2017; Murayama 
et al., 1999; Sakai et al., 2010). Spheres, cubes, and elongated and flattened cuboids are used by Adachi and 
Buseck (2015) as model particles to assess effects on light scattering. In order to model depolarization ratios, 
cubes were used by David et al. (2013); Haarig et al. (2017); Murayama et al. (1999); Sakai et al. (2010). Bi, 
Lin, Wang, et al. (2018) demonstrated the applicability of superellipsoids to model the depolarization of sea-
salt aerosol particles. In that study, superellipsoids resembling rounded cubes, spheres, and rounded octahe-
dra as well as distortions of these base solids by changing the aspect ratio were considered. Sea-salt aerosol 
with a water coating was investigated in regard to the depolarization ratio (Bi, Lin, Wang, et al., 2018), and 
in regard to the impact on radiative forcing (Wang et al., 2019).

For large-scale applications, such as inversion of global remote sensing observations, or assimilation of such 
observations into regional and global chemical transport models, one needs to employ simple and robust 
aerosol-optics models. In addition, one needs to quantitatively understand the error introduced by employ-
ing such a simple model. This error estimate enters into the observation error covariance matrix, which is 
an essential ingredient in inverse methods. Following the definition given by Kahnert et al. (2020), a simple 
model particle has to fulfill some or all of the following properties.

1.  The model simplifies the morphology as much as possible;
2.  It has only a small number of free tuning parameters;
3.  It covers a large range of values of the optical parameters by varying the tuning parameters; and
4.  It simultaneously reproduces several of the optical properties for a range of particle sizes, wavelengths, 

and compositions

We know that superellipsoids do fulfill at least properties 1–3 (Bi, Lin, Wang, et al., 2018). We will, therefore, 
use this geometry as a reference. However, studies on mineral dust have taught us that particles that fulfill 
property 3 for any given optical property have a tendency to grossly overestimate the model error for that 
optical property (Kahnert et al., 2020). By contrast, it was found that irregular particle models based on 
random distortions of the simple reference geometry can provide realistic estimates of the model error vari-
ances, provided that one employs a sufficiently large ensemble of random geometries (Kahnert et al., 2020). 
Experience with modeling polarimetric properties of mineral dust has also taught us that uncertainties in 
the refractive index can be significant. Since variations in the refractive index are difficult to account for in 
large-scale applications, this source of uncertainty is usually included in the estimate of the model error 
(e.g., Kahnert et al., 2020).

Based on lessons learned from mineral dust, we will investigate the following questions for sea salt.
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•  We know that superellipsoids can be tuned to reproduce depolarization by sea salt. What are the pros-
pects of generalizing this to simultaneously mimic depolarization and the lidar ratio of sea-salt particles?

•  Are random distortions of a cubic reference shape a viable approach for estimating error variances in 
optics models based on the use of cubic or cuboidal model particles? Are there differences between dif-
ferent randomization approaches?

•  The variable composition of sea salt results in a variation in the refractive index, which affects the optical 
properties. How large is the impact of this source of uncertainty compared to that of the variation in the 
geometry?

The focus in this investigation will be on the linear depolarization ratio and on the extinction-to-backscatter 
ratio (or lidar ratio).

2. Particle Geometries
We use superellipsoids as a reference shape, in which we vary the roundness of the edges. Both cubical 
and octahedral superellipsoids will be considered. Further, we investigate two approaches for considering 
irregular randomizations of a cubical reference shape, namely, by using convex polyhedra and Gaussian 
random cubes.

2.1. Convex Polyhedra

Based on irregularly shaped dust model particles used for radiative forcing calculations by Torge et al. (2011), 
convex polyhedra were created. Nc points were randomly placed in a Cartesian coordinate system, and 
around these points a convex hull is placed. This results in an irregular shape with a surface composed of 
plane faces. The convex hull is constructed using the quickhull algorithm (Barber et al., 1996) as imple-
mented in the SciPy library for Python (Virtanen et al., 2020). As the points are randomly placed in a Car-
tesian coordinate system the shape of the convex polyhedron converges to a cubical shape for a sufficiently 
large number of points Nc. Here, Nc = 10, Nc = 100, and Nc = 1,000 were used. For each value of Nc, five 
different particle realizations were constructed to capture the variability associated with the random place-
ment of the Nc points, when creating the convex polyhedra. Strictly speaking shapes like cubes or octahedra 
are convex polyhedra, too. For brevity, we use the term “convex polyhedra” to refer to the irregular convex 
polyhedra, which are neither cubical, nor octahedral.

Figure 1 shows examples for scattering geometries used in the optical calculations of such convex polyhedra 
with a different number of points inside the convex hull. The number of points inside the convex hulls are 
10 (Figure 1a), 100 (Figure 1b), and 1,000 (Figure 1c). With growing number of points the shape increasing-
ly resembles a cube. For comparison Figure 1d shows a cube, which corresponds to Nc → ∞. The example 
shapes were created assuming volume discretization.

2.2. Gaussian Random Cubes

By Gaussian random cubes we refer to shapes obtained by superimposing Gaussian random perturbations 
onto a cube using a modified version of the G-sphere algorithm (Muinonen et al.,  1996). The Gaussian 
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Figure 1. Convex polyhedra with different number of points included in the convex hull N (a–c) and a cube for 
comparison (d). The number of points increases from left to right: Nc = 10 (a), Nc = 100 (b), and Nc = 1,000 (c). The 
cube (d) corresponds to Nc → ∞.
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random perturbations are described by two different parameters, the relative radial standard deviation σr, 
which determines the magnitude of the perturbations, and the correlation angle Γ, which determines the 
angular scale of the fluctuations. The smaller Γ, the higher the angular frequency of the random surface 
perturbations (Muinonen et  al.,  1996). More specifically, given a surface parameterization rcube(θ, ϕ) of 
the surface of a cube in spherical coordinates, and given the surface parameterization rGRS(σr, Γ; θ, ϕ) of a 
unit Gaussian random sphere with radial relative standard deviation σr and correlation angle Γ (Muinonen 
et al., 1996), we define the surface parameterization r(θ, ϕ) of the Gaussian random cube by

       cube GRS r( , ) ( , ) ( ,Γ; , ).r r r (1)

For the radial standard deviation of the perturbations we chose σr = 0.05, 0.1, 0.15, 0.2, and for the corre-
lation angle Γ = 10°, 20°, 30°, and 90°. For each of the configurations five different stochastic realizations 
were created to capture the variation due to the random nature of the perturbations. The chosen values were 
based on the theoretical study on Gaussian random spheres by Muinonen et al. (1996).

Figure 2 shows Gaussian random cubes with a fixed correlation angle Γ = 10° (b–e) and a cube (a) for com-
parison. As for Figure 1 volume discretization was used for depicting these shapes. The relative standard 
deviation of the radius increases by steps of Δσr = 0.05 from σr = 0.05 (b) to σr = 0.2 (e).

Comparing with reported images of dried sea-salt aerosol (Gwaze et al., 2007; King et al., 2012; McInnes 
et al., 1994; Patterson et al., 2016; Peart & Evans, 2011; Sakai et al., 2010; Zeng et al., 2013) radial standard 
deviations of σr > 0.1 appear not to be representative of typical atmospheric and laboratory samples. Nev-
ertheless, we include these values here to study the effect of more extreme deviations from cubical shape.

Figure 3 is analogous to Figure 2, but showing different values of the correlation angle Γ at a fixed radial 
standard deviation σr = 0.1 (b–e). The correlation angles increase from left (Γ = 10°, (b) to right (Γ = 90°, (e).

2.3. Superellipsoids

Superellipsoids are three-dimensional shapes represented by the product of super-quadratic curves and 
can be considered generalizations of ellipsoids (Barr, 1981; Wriedt, 2002). The suitability of superellipsoids 
for modeling depolarization ratios of mineral dust (Bi, Lin, Liu, et al., 2018) and sea-salt aerosol (Bi, Lin, 
Wang, et al., 2018) were previously demonstrated. In those studies, the invariant embedding T-matrix meth-
od has been employed (Bi et al., 2013; Johnson, 1988; Sun et al., 2019). Various different solids ranging 
from cuboids, cylinders, spheres to octahedra can be obtained as realizations of superellipsoids (e.g., see 
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Figure 2. Example of Gaussian random cubes with Γ = 10° and increasing radial standard deviation σr. (b) σr = 0.05, 
(c) σr = 0.1, (d) σr = 0.15, and (e) σr = 0.2 compared to a cube (a).

Figure 3. Example of Gaussian random cube with σr = 0.1 and increasing correlation angle Γ. (b) Γ = 10°, (c) Γ = 20°, 
(d) Γ = 30°, and (e) Γ = 90° compared to a cube (a).
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Wriedt (2002)). The superellipsoidal equation for a Cartesian coordinate system with coordinates x, y, and 
z is (Barr, 1981; Wriedt, 2002)

 
              
       

2 2 2

1

e
n

e e nx y z
a b c

 (2)

The particle's extent along the three Cartesian axes x, y, and z is determined by a, b, and c, respectively. n and 
e are the roundness parameters in north-south (or polar) and east-west (or azimuthal) direction, respective-
ly, which specify the shape. Variation of n and e allows for flexible modeling of a particle's roundness. Here 
we follow the approach by Bi, Lin, Liu, et al. (2018); Bi, Lin, Wang, et al. (2018) by assuming a = b and n = e.

To investigate the impact of sharp edges we consider a cube (corresponding to n = 0) and slightly rounded 
cubes (n = 0.1 and n = 0.2), as well as an octahedron (n = 2.0) and rounded octahedra (n = 1.9 and n = 1.8). 
A spheroid would have a roundness parameter of n = e = 1. The aspect ratio was assumed to be 1, that is, 
a = c. The superellipsoids used for optical modeling are shown in Figure 4. The cube and the rounded cubes 
are shown in the top row (a–c) and the octahedron and the rounded octahedra are shown in the bottom row 
(d–f). In both rows, the roundness increases from left to right. The sharp-edged shapes are in the left column 
(a and d), the middle column (b and e) and the right column (c and f) show shapes with slightly rounded 
shapes. As these images display the input scatterers for the optical calculation volume discretization was 
used for depiction.

2.4. Size Distribution of Marine Aerosol

We start by investigating optical properties for randomly oriented particles of a definite size. The focus on 
monodisperse particles has advantages both for the analysis of results as well as for the practical imple-
mentation of the investigation. Subtle differences in optical properties due to morphological variations are 
more apparent when comparing monodisperse particles. Size averaging can blur out these differences, thus 
making it more difficult to understand the relation between morphological and optical properties. From a 
practical point of view, size-averaging typically requires computations for a large number of discrete siz-
es, which is often computationally unfeasible for irregularly shaped particles. Thus, when focusing on a 
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Figure 4. Examples of cube-like superellipsoids (top row) and octahedron-like superellipsoids (bottom row). The 
roundness increases from left to right. (a and d) Show sharp-edged geometries with n = 0 and n = 2, respectively. (b 
and e) Show geometries with n = 0.1 and n = 1.9, respectively. (c and f) Show geometries with n = 0.2 and n = 1.8, 
respectively.
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few definite sizes we can often afford to consider morphologically highly complex particles. On the other 
hand, size distributions of aerosols are more realistic; but the high computational requirements limit us to 
using fast computational methods, which are often tailored to particles with geometric symmetries (e.g., 
Kahnert, 2013a, 2013b). Here, we limit our investigation of size-averaged optical properties to cube-like su-
perellipsoids with e = n = 0, 0.1, and 0.2. For these geometries, we can employ the T-matrix method which 
is faster than the DDA, by several orders of magnitude. For example, computing the optical properties for 
superellipsoids with rve = 1.0 μm and n = 1.8 using the DDA with the specifications given below, required 
8,395 core hours, corresponding to the equivalent of more than 11.5 months of calculations on a single core. 
The corresponding T-matrix computations took less than 2 min. The DDA calculations for a superellipsoid 
with rve = 1.0 μm and n = 2.0, required 10,763 core hours, corresponding to nearly 1.25 years of calculations 
on a single core. The corresponding T-matrix results had to be averaged over seven different values of the 
cut-off parameter, which required a total of 8.5 min of computation time. Note, however, that in this study 
smaller volume elements than the ADDA default size were used, which contributed to the high computa-
tional demand of the DDA calculations. (The reasoning for this choice is explained in Section 3). Also, the 
symmetries of superellipsoids have not been exploited in setting the range of orientational angles. Doing so 
could save about a factor of 16 in the time required for the DDA computations.

This illustrates that it is hardly feasible to compute DDA results averaged over a large number of particle 
sizes. The high computational speed of the T-matrix method derives from two features, namely, (i) orien-
tation-averaging is done analytically, and (ii) the Tsym code exploits particle symmetries by making use of 
commutation relations of the T-matrix as well as irreducible representations of the pertinent symmetry 
group (Kahnert, 2013a).

For the size averaging of superellipsoids, we use two different types of size distributions.

1. We consider a monomodal log-normal size distribution


 

 
  

  

2
0

mono 0 2
ln ( / )( ; , , ) exp ,

2 lnln 2
ve

ve n
nve n

N r rn r N r
r

 (3)

where, N is the particle number density, nmono describes the number of particles per volume element per size 
interval, rve is the volume-equivalent radius of the particles, r0 is the median radius, and σn represents the 
geometric standard deviation. In our calculations we use σn = 1.5 and r0 = 0.1, 0.2, …, 1.5 μm. Size averaging 
of the optical properties involves integration of the scattering matrix elements, weighted by the scattering 
cross section and the size distribution. Numerically, we perform the integration by use of 146 equally spaced 
particle sizes 0.050, 0.067, …, 2.509 μm.

2. Marine aerosol is often best described by a bimodal size distribution. Thus, as a more realistic case, we 
consider a bimodal log-normal size distribution given by

 
 




bimodal 1 0,1 ,1 2 0,2 ,2

mono 1 0,1 ,1 mono 2 0,2 ,2

( ; , , , , , )
( ; , , ) ( ; , , ).

ve n n

ve n ve n

n r N r N r
n r N r n r N r (4)

For the median radii, geometric standard deviations, and number densities in each mode we use 12 different 
combinations of parameters taken from the study by Porter and Clarke (1997) (to be more specific Table 2 
therein). They are based on observations in the marine boundary layer at winds speed varying between 0.4 
to more than 33 m/s. Note, however, that marine aerosol populations at high wind speeds would contain 
considerable number densities of coarse aerosol. We are limited by computational constraints to particles 
radii not exceeding 2.509 μm. Thus our computation cannot be regarded as covering a similar range of wind 
speeds as the size distributions given by Porter and Clarke (1997).

For either size distribution, we present the size-averaged optical properties as functions of the effective 
radius
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where nm/b denotes either the monomodal or the bimodal log-normal size distribution. Thus the effective 
radius represents the ratio of the third and the second moment of the size distribution. It is a quantity 
frequently employed for characterizing the size of polydisperse particles in light-scattering processes (e.g., 
Mishchenko et al., 2002).

3. Optical Modeling
The optical calculations were performed for a wavelength of 532 nm. This is the second harmonic of neo-
dymium-doped yttrium aluminum garnet (Nd:YAG) lasers, which are commonly used in lidar instruments 
(Eloranta, 2005; Wandinger, 2005).

The refractive index of NaCl as given by Eldridge and Palik (1997) was used as a reference value in this 
study, as sea salt is dominated by sodium chloride. Thus we assume m = 1.5484 + i0. Note that the imagi-
nary part of the refractive index is zero, that is, the particles are assumed to be non-absorbing. However, ma-
rine aerosol can contain varying amounts of organic substances and dimethyl sulfide (DMS). The presence 
of absorbing organic material can increase the imaginary part of the refractive index. DMS, which is optical-
ly softer than NaCl, may lower the real part of the refractive index. Further, the refractive index of sea-salt 
aerosol has a weak dependence on the relative humidity (Cotterell et al., 2017; Shettle & Fenn, 1979). Cor-
respondingly, refractive indices reported for marine aerosol vary quite considerably (Sayer et al., 2012). For 
instance, Hänel (1976) reported slightly different values for dried marine aerosol (m = 1.55 + i0.059) and 
dried sea spray aerosol (m = 1.55 + i0). (Since Hänel (1976) reported values not directly at λ = 0.532 μm, the 
values cited here were obtained from linear interpolation.) The latter value underscores that the refractive 
index of NaCl closely agrees with that of sea-salt aerosol.

In retrieval or assimilation methods, it would be impossible to account for the variable composition of 
marine aerosols. Rather, one would consider the variation in the refractive index as a source of uncer-
tainty and include the corresponding changes in optical properties in the error estimates. Here, we will 
assess the impact of this source of uncertainty on the modeling results by considering two additional values 
of the refractive index, namely, m = 1.55 + 0.059i and m = 1.415 + 0.002i. These values are taken from 
Hänel (1976) and Hess et al. (1998); Shettle and Fenn (1979), respectively. The value of m = 1.55 + i0.059 is 
taken as a proxy for marine aerosol with a relatively high amount of absorbing material. We use a value of 
m = 1.415 + i0.002i (Hess et al., 1998; Shettle & Fenn, 1979) as a representative for more weakly scattering 
and slightly more absorbing marine aerosols.

The calculations were performed at three different volume-equivalent radii rve = 0.25, 0.5, and 1.0 μm. At 
λ = 0.532 μm, these radii correspond to the size parameters x = 2.95, 5.91, and 11.81, respectively. Size pa-
rameter x and volume-equivalent radius rve are related by x = 2πrve/λ. This covers a large part of the typical 
size range for this kind of aerosol, although particles up to radii of 5 μm are not uncommon. However, the 
upper end of our size range is constrained by computational capabilities of light-scattering software.

Optical calculations were performed using the discrete dipole approximation (DDA) code ADDA, version 
1.3 (Yurkin & Hoekstra, 2007, 2011). The DDA can treat arbitrary geometries, as the scatterer is divided into 
multiple, fully polarizable volume-elements called dipoles, which are much smaller than the wavelength. 
The dipoles interact with each other and the incident field, resulting in a set of linear equations, which are 
solved using standard numerical methods. As a consequence of dividing the scatterer into fully polarizable 
dipoles arbitrary geometries and inhomogeneous scatterers can be treated.

Setting up the dipole geometries, which serve as an input for the DDA calculations, is strongly connected to 
the definition of the scatterers’ geometry on a discrete Cartesian coordinate system. As a consequence, the 
volume equivalent radii, at which the calculations were performed, correspond to the discretized shape in 
ADDA (i.e., rve corresponds to -eq_rad in ADDA).

We also performed T-matrix calculations on superellipsoids. We employed the Tsym code (Kahnert, 2013a), 
version 6.6α. This code is highly efficient for particles with discrete symmetries, such as superellipsoids, as 
it makes use of commutation relations (Schulz et al., 1999) and irreducible representations (Kahnert, 2005) 
of finite symmetry groups. Averaging over orientational angles is performed analytically. Here, we extend-
ed the Tsym version described by Kahnert  (2013a) by including superellipsoids into the code. A major 
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difficulty is that Waterman's surface-integral equation method, on which this code is based, requires the 
surface parameterization as well as its partial derivatives in spherical coordinates. We are not aware of any 
publications that provide a parameterization of superellipsoids in spherical coordinates, certainly not in the 
light scattering literature. Equation 2 only provides us with an implicit equation of the particle surface in 
Cartesian coordinates. Equation 2 given by Wriedt (2002) provides a parameterization in another coordi-
nate system, but not in spherical coordinates. Thus, we derived, implemented, and tested a surface parame-
terization of superellipsoids and their partial derivatives in the spherical coordinate basis. The details of this 
derivation are given in the Appendix A.

For ideal cubes, the code was run with the standard geometry setting ’FCCUBE’ for face-centered cubes. 
All other geometries were run by use of the new geometry of superellipsoids. As this geometry is limited 
to roundness parameters n, e < 2, we approximate ideal octahedra by setting n = e = 1.99. In the computa-
tions the infinite-dimensional T-matrix has to be truncated at a finite cut-off index Ncut as explained in the 
description of the code (Kahnert, 2013a). (In the parameter file of Tsym, this parameter is called “nmax.”) 
In all but one case considered here the computations were stable over a broad range of Ncut values. This is 
illustrated in Figure S1. However, for rev = 1 μm and e = n = 1.99, the computational results were only stable 
over a small range of Ncut values, and the optical properties were averaged over that range as explained in 
(Yurkin & Kahnert, 2013). The precise values of Ncut used in the computations are given in Tables S4 and S5.

The Tsym computations serve two main purposes. (i) We employ the T-matrix results for comparison with 
DDA computations (see below). (ii) DDA computations are prohibitively time consuming for computing 
optical properties for an entire size distribution. For this reason, we employ the T-matrix method for inves-
tigating size-averaged optical properties of superellipsoids (see Sec. 2.4).

The light scattering computations give out the optical cross sections and the full scattering matrix, from 
which other optical parameters can be calculated. For instance, the extinction-to-backscatter ratio Sp, 
which, in the context of lidar remote sensing, is frequently referred to as the lidar ratio, can be calculated for 
a distinct particle size r as (Gasteiger et al., 2011)

   ext
180

sca 11

( )( ) (4 |
( ) ( )p

C rS r
C r F r (6)

Cext is the particle's extinction cross section, Csca the particle's scattering cross section, and F11 denotes the 
phase function, which is the (11) element of the normalized Stokes scattering matrix.

The linear backscattering depolarization ratio can be calculated by (Mishchenko & Hovenier, 1995):
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where, F22 denotes the (22) element of the normalized Stokes scattering matrix, and ϑ represents the scatter-
ing angle. The expression is evaluated in the backscattering direction (ϑ = 180°).

The discrete dipole approximation is derived from the volume-integral equation of electromagnetic scat-
tering under the assumption that the volume elements are much smaller than the wavelength of light. 
Thus, the dipole spacing is one of the main parameters that control the numerical accuracy of the results. 
To estimate the related numerical uncertainty, the dipole spacing for a superellipsoid with rve = 0.5 μm and 
n = e = 0.2 is varied. In the ADDA code, we express the dipole spacing as dipoles per wavelength (dpl). The 
larger we set the value of dpl, the finer the dipole grid.

Another measure to control the dipole spacing is |m|kd, with m being the complex refractive index of the 
scatterer, k = 2π/λ the wavenumber in vacuum, and d the dipole spacing. dpl and |m|kd can be converted 
into each other by |m|kd = 2|m|π/dpl (Yurkin et al., 2006).

As we assume totally random orientation of each scatterer, the use of orientation averaging is required. The 
number of orientations, are controlled by another set of parameters, which impact the numerical accuracy 
of the results. Particle orientation with respect to the laboratory reference frame within ADDA is specified 
by the three Euler angles α, β, and γ. In order to get orientationally averaged results, ADDA provides an 
internal orientation averaging. The averaging is calculated over the Euler angles. Here, averaging over α 
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is performed by a single computation of internal fields, whereas averaging over β and γ is done by inde-
pendent DDA simulations (Yurkin & Hoekstra,  2011). Owing to the use of Romberg integration within 
ADDA the angles are uniformly spaced, in case of β as values of cos β. The set of integration points used for 
orientation averaging is defined by the minimum and maximum value and the minimum and maximum 
number of subdivisions Jmin and Jmax. The total number of argument values of the Romberg integration is 
limited to max2 1J .

To estimate the impact of the dipole spacing, calculations for a superellipsoid with a roundness parameter 
n = e = 0.2 (i.e., a lightly rounded cube) and a superellipsoid with n = e = 0.0 (i.e., a cube) were performed 
with 16 different dipole spacings ranging between dpl = 10 and dpl = 160; the results were compared to 
T-matrix calculations. The estimation of the impact of the dipole spacing was performed with a constant 
number of 68,096 orientations (i.e., Jmax = 6 for the Euler angle α and Jmax = 5 for both the Euler angles β 
and γ). To assess the uncertainty related to the dipole spacing and to provide a further comparison of DDA 
and T-matrix results, the DDA calculations for different dipole spacing were extrapolated to infinitely small 
dipoles by using the method described by Yurkin et al. (2006). In this method a second order polynomial 
is fitted to the respective quantity as a function of |m|kd, the resulting polynomial is then extrapolated to 
|m|kd = 0, which would correspond to dpl = ∞, that is, infinitely small dipoles. The (11), (22), and (12) ele-
ments for such a superellipsoid with four different dipole spacings are shown in the left column of Figure 5. 
The rather coarse dipole spacing of dpl = 10 is indicated in dark blue, dpl = 19 is depicted by the green line, 
dpl = 42 in light-red, dpl = 92 in purple, and the finest dipole spacing of dpl = 160 is represented by the 
yellow line. The T-matrix results are shown by the light-blue line. The right column of Figure 5 shows the 
absolute deviation of the matrix elements with different dipole spacing from the matrix elements obtained 
from extrapolation of the DDA results.

The (11) element of the Stokes scattering matrix shows only comparatively little variation with changing 
dipole spacing for dipole spacings of dpl ≥ 19. It should be noted, that dpl = 10 is below the ADDA default 
dipole spacing of dpl = 10|m| (Yurkin & Hoekstra, 2011) (in this study 10|m| = 15.8). The accuracy of the 
DDA results for optical cross sections with the ADDA default value is in the order of several percent (Draine 
& Flatau, 1994; Yurkin & Hoekstra, 2007, 2011), coarser dipole spacings further reduce the accuracy. The 
different lines for the F11 elements, with exception of the line for dpl = 10 are nearly indistinguishable by 
visual inspection. The (12) and (22) element of the Stokes scattering matrix converge toward the T-matrix 
results with increasing dpl. However, the variation of the DDA results with dpl is rather weak. For instance, 
the 12 and 22 elements for dpl = 92 (purple) are hardly distinguishable from dpl = 160 (yellow), or from the 
T-matrix results (light blue). With finer dipole spacing the deviations from the extrapolated matrix elements 
decrease. For the (11) and the (22) element, the T-matrix results deviate least from the corresponding matrix 
elements. For the (12) element, the deviations of the T-matrix results and the DDA results for dpl = 160 from 
the reference results are of similar magnitude. Considering the small differences between the extrapolated 
DDA results and the T-matrix results, both methods can be considered equivalent.

From the extrapolated matrix elements and the extrapolated extinction cross section, we calculated the ex-
tinction-to-backscatter ratio and the linear backscattering depolarization ratio. Figure 6 shows the absolute 
deviation from the extrapolated values of extinction-to-backscatter ratio (top) and linear backscattering 
depolarization ratio (bottom) for superellipsoids with both n = e = 0.0 (green) and n = e = 0.2 (blue). On the 
right of the vertical line we show the absolute deviation of the T-matrix results from the extrapolated DDA 
results. In case of the superellipsoid with n = e = 0.0 (i.e., the cube) the absolute differences between the 
extrapolated values for the DDA and the T-matrix are ΔSp = 0.67 sr and Δδl = 5.2 ⋅ 10−3. For the superellip-
soid with n = e = 0.2 the respective values are ΔSp = 0.23 sr and Δδl = 7.8 ⋅ 10−4. From these small absolute 
differences, we conclude that DDA and T-matrix yield very similar results and can be used interchangeably.

In order to not overly increase the computational burden, we chose a dipole spacing corresponding to 
|m|kd ≤ 0.4, or dpl ≥ 25 respectively. As a consequence differences smaller than Δδl = 0.018 and ΔSp = 1 sr, 
respectively, cannot be distinguished from artifacts due to dipole spacing.

To gauge the impact of the number of subdivisions and hence the impact of the number of orientations, we 
performed calculations for four different values of Jmax with Jmax(β) = Jmax(γ); for Jmax(α) we assumed Jmax-

(α) = Jmax(β) + 1. An additional parameter is the required accuracy (Yurkin & Hoekstra, 2014). By setting 
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this required accuracy to zero, the calculations were performed by setting the number of subdivisions to 
Jmax. The resulting F11, F22, and F12 elements of the scattering matrix are shown in Figure 7. The results 
for Jmax = 3, resulting in 64 ADDA runs, and when considering averaging over α in 1,024 angular orienta-
tions, are shown in blue, the results for Jmax = 4 (256 ADDA runs, 8,192 orientations) are shown in green, 
the results for Jmax = 5 (1,024 ADDA runs, 68,096 orientations) in olive, and the results for Jmax = 6 (4,096 
ADDA runs, 524,288 orientations) in light purple. For comparison the T-matrix results are also shown in 
light-blue. Especially in the backscattering direction the T-matrix results are in agreement with the DDA re-
sults for Jmax = 6. With exception of the F11 and the normalized F22 element in backscattering direction and 
the normalized F12 element at ϑ = 150° and 170° the results for Jmax = 5 and Jmax = 6 are indistinguishable. 
In backscattering direction, the relative differences of the F11-element between Jmax = 5 and Jmax = 6 were 
10.9% (n = 0.0) and 6.5% (n = 0.02). As a comparison, for irregular particles with a similar size parameter 
Gasteiger and Wiegner (2018) reported a relative deviation of up to 6%, although for two different num-
bers of orientations considered. The differences in the backscattering direction affect the backscattering 
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Figure 5. F11 (top left), F22/F11 (middle left), and F12/F11 (bottom left) for a superellipsoid with n = e = 0.2 and rve = 0.5 μm (see Figure 4c) and different dipole 
spacing, expressed as dipoles per wavelength dpl; dpl = 10 in dark blue, dpl = 19 in green, dpl = 42 in light-red, dpl = 92 in purple, and dpl = 160 in yellow. The 
light-blue line indicates the matrix elements obtained from T-matrix calculations. The right column shows the deviation of the respective matrix elements from 
the elements obtained by extrapolating from DDA results.
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depolarization ratio, and the extinction-to-backscatter ratio, which are shown in Figure  8 as a function 
of Jmax. The difference of δl between Jmax = 5 and Jmax = 6 is 0.015 (corresponding to 6.1%) for n = 0.2 and 
0.022 (or 9.1%) for n = 0.2. In case of Sp, the corresponding differences are 1.04 sr (6.1%) and 2.06 sr (9.8%), 
respectively.

Analogous to the choice of dipole spacing, there is a trade-off between the accuracy of the DDA result and 
the number of orientations considered for orientation averaging. We chose Jmax = 5 for both the Euler angles 
β and γ. Exploiting rotational and reflection symmetry of cubes and superellipsoids could reduce the range 
of the Euler angles in orientation averaging (Penttilä et al., 2007). This would reduce the computational 
burden of the ADDA calculations discussed in Section 2.4.

Furthermore, we used the Bi-CGStab(2) iterative solver and divided the range of the scattering angles into 
720 intervals (i.e., with a resolution of 0.25°). Otherwise ADDA default settings were used.

4. Results
4.1. Convex Polyhedra

The ensemble-averaged (11), (22), and (12) elements of the normalized scattering matrix for the different con-
vex polyhedra are shown in Figure 9. (The values shown here are tabulated in Table S1.) The rows correspond 
to the matrix elements and the columns to the different volume-equivalent radii. The colors indicate the re-
sults for different numbers of randomly placed points Nc, as well as for the cubes, which correspond to Nc → ∞.

The values of both the convex polyhedra with Nc = 100 and Nc = 1,000 are close to the values from the 
cubes (Nc → ∞), whereas the values for Nc = 10 deviate more strongly from the values for the cubes. As the 
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Figure 6. Absolute deviation of extinction-to-backscatter ratio (ΔSp, top panel) and linear depolarization ratio (Δδl, 
bottom panel) from extrapolated DDA results as a function of dipoles per wavelength (dpl). Results for a superellipsoid 
with n = e = 0.0 (i.e., a cube) are shown in green and results for a superellipsoid with n = e = 0.2 are shown in blue. 
Calculations were performed for a volume-equivalent radius of rve = 0.5 μm and at λ = 0.532 μm. The values right of 
the vertical line refer to the T-matrix results.
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example geometries shown in Figure 1 indicate, the solids with Nc = 10 deviate most from a cubical shape. 
Thus, the geometric variation closely corresponds to the variation in the scattering matrix elements.

Figure  10 shows the size-dependent backscattering cross section Cbak, extinction-to-backscatter ratio Sp, 
and linear backscattering depolarization ratio δl for convex polyhedra with Nc = 10 (dark-blue), Nc = 100 
(green), Nc = 1,000 (purple), and N → ∞ (cyan), which is represented by a cube. With the exception of 
the cube, the crosses denote the arithmetic mean over five different geometric realizations, and the bars 
indicate the range between the maximum and minimum of each quantity in the ensemble. To allow for an 
easier visual inspection the points in Figure 10, as well as in Figures 14 and 16 are slightly shifted in the 
x-direction. With increasing number of points, the variation in the backscattering cross section and in the 
extinction-to-backscatter ratio is reduced, so that for Nc = 1,000 the spread in the ensemble is very small. 
However, this does not hold for δl, for which the range for Nc = 100 with rve > 0.5 μm is larger than the range 
for Nc = 10. Possibly five different stochastic realizations per Nc do not sufficiently sample from the variety 
of possible shapes for Nc = 10 and hence potentially underestimate the full range of possible values.

The larger deviations in the F22-element in backscattering direction for Nc = 10 compared to the cube (N → 
∞), especially for rve = 0.5 μm and rve = 1.0 μm, are mirrored in the comparatively large differences in the lin-
ear depolarization ratio. Compared to the cubical shape the convex polyhedra with Nc = 10 give consistently 
higher δl values. For instance, for rve = 1 μm, the depolarization ratio modeled with the convex particles with 
Nc = 10 is around 0.45, which is about twice as high as that obtained with Nc ≥ 100.
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Figure 7. F11, F12, and F12 matrix elements for superellipsoids with rve = 1.0 μm, and n = 0.0 (left column) and n = 0.2 (right column) for different values of Jmax 
(as indicated by the colors) and for T-matrix results (shown in light-blue).
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The main general result in Figure 10 is that the convex polyhedra model yields optical properties that scatter 
about those obtained for cubes, provided that we exclude the rather extreme case of Nc = 10. This means 
that both positive and negative deviations from the reference results of ideal cubes are observed. As we will 
see in the next section, this differs markedly from the corresponding results for Gaussian random cubes. The 
implications of this observations will be discussed in Section 5.

4.2. Gaussian Random Cubes

As explained in Section  2.2 Gaussian random cubes are created by superimposing Gaussian distortions 
characterized by the correlation angle Γ and the radial standard deviation σr on a cube. Figures 11–13 show 
the (11), (22), and (12) normalized scattering matrix elements for Gaussian random cubes. Each figure 
shows the matrix elements for a different volume-equivalent radius (Figure 11 for rve = 0.25 μm, Figure 12 
for rve = 0.5 μm, and Figure 13 for rve = 1.0 μm). As in Figure 9 the rows indicate the respective mean matrix 
elements. The columns in all three figures indicate the radial standard deviation σr. The left-most column 
shows matrix elements for σr = 0.05, the center-left column for σr = 0.10, the center-right for σr = 0.15, and 
the right-most column for σr = 0.20. The colors indicate the correlation angle. The results for a correlation 
angle of Γ = 10° are shown in dark blue, the results for Γ = 20° in green, for Γ = 30° in light red and for 
Γ = 90° in yellow.

For comparison, we added the corresponding matrix elements of a cube of the same volume-equivalent 
radius, shown in purple.

Inspection of Figures  11–13 reveals several interesting features related to the random surface perturba-
tions. Among the more predictable phenomena is a steadily increasing deviation from the scattering matrix 
elements of the cube with increasing radial standard deviation σr (moving from left to right through the 
columns). Further, by comparing the three figures, we clearly see that the effect of surface perturbations 
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Figure 8. Linear backscattering depolarization ratio (top panel) and extinction-to-backscatter ratio (bottom panel) 
of superellipsoids with rve = 1.0 μm and n = 0.0 (green) and n = 0.2 (blue). The values right of the vertical line refer, 
analogously to Figure 6, to the T-matrix results.
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becomes more pronounced for larger particles. For the largest particles (see Figure 13) it becomes particu-
larly apparent that the impact of the surface perturbation is most pronounced for the shortest correlations 
angles. For small angles Γ and high values of σr the Gaussian random perturbations of the reference geome-
try tend to smooth out some of the oscillations in the (12) and (22) elements of the scattering matrix. Finally, 
we see in all three figures that, overall, the surface perturbation impacts the polarization and depolariza-
tion-related scattering matrix elements F12 and F22 more dramatically than the phase function F11. While 
the (11) and (22) elements are fairly sensitive in the backscattering direction, the (12) element is mostly 
perturbed at angles away from the exact forward and backward-scattering directions.

Figure 14 shows the size-dependent backscattering cross section (left column), extinction-to-backscatter 
ratio (center column), and the linear depolarization ratio (right column) for different correlation angles 
(colors as in Figures 11–13) and radial standard deviations. The different radial standard deviations are 
represented in the different rows. The top row corresponds to σr = 0.05, the second to top row σr = 0.1, the 
third row σr = 0.15, and the the bottom row to σr = 0.2. The values shown in Figure 14 are also tabulated in 
Table S2.

KANNGIEßER AND KAHNERT

10.1029/2020JD033674

15 of 31

Figure 9. (11), (22), and (12) elements of the normalized scattering matrix for convex polyhedral shapes with Nc = 10 (dark blue), Nc = 100 (green), Nc = 1,000 
(purple), and for a cube, corresponding to N → ∞ (cyan). The (22) and (12) elements are normalized with respect to the (11) element. The matrix elements, with 
exception for the ones of the cube were averaged over five different geometrical realizations. The columns represent the three different volume-equivalent radii 
rve = 0.25 μm (left column), rve = 0.5 μm (center column), and rve = 1.0 μm (right column).
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Gaussian random cubes behave entirely differently from the convex polyhedra considered in the previ-
ous section. While the optical properties of the polyhedra scatter about the reference values of cubes, the 
Gaussian random cubes introduce a bias in the linear depolarization ratio; they all increase δlrelative to the 
reference values for cubes. The small scale distortions (Γ = 10°, 20°, 30°) result in depolarization ratios, that 
deviate more strongly from the values obtained for cubes than the depolarization ratios stemming from the 
large scale distortion (Γ = 90°). The consequences of these results will be discussed in Section 5.

4.3. Superellipsoids

Figure 15 shows the (11) (top row), (22) (middle row), and (12) (bottom row) elements of the scattering 
matrix F for superellipsoids with different roundness parameter, as indicated by the colors. Shades of green 
indicate (rounded) cubes, while shades of purple indicate (rounded) octahedra. The (22) and (12) elements 
are normalized with respect to the (11) element. The columns indicate the different sizes, with the results 
for rve = 0.25 μm shown in the left column, for rve = 0.5 μm in the middle column, and for rve = 1.0 μm in 
the right column.

Scattering matrix elements for cubes with sharp edges do not strongly differ from those with rounded edges. 
Similarly, octahedra with sharp and with rounded edges display many similarities. The differences between 
cube-like and octahedra-like particles are generally larger than the corresponding differences among parti-
cles with different degrees of roundness in each of these two groups.

Analogous to Figure 10, Figure 16 shows the size-dependent backscattering cross section Cbak (top row), the 
size-dependent extinction-to-backscatter ratio Sp (middle row), and the linear backscattering depolarization 
ratio δl (bottom row). The different colors refer to the superellipsoids with different roundness parameters n 
with colors as in Figure 15. The values shown in Figure 16 are also tabulated in Table S3.

For rve = 1.0 μm (rounded) octahedra have a higher backscattering cross section than (rounded) cubes, which 
results in a lower extinction-to-backscatter ratio. Furthermore, the values of the linear depolarization ratio 
from (rounded) cubes (δl ≈ 0.22) and (rounded) octahedra (δl ∼ 0.35–0.4) for rve = 1.0 μm deviate more strongly 
from each other, than for the other two sizes. Increasing roundness, that is, values of the roundness parameter 
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Figure 10. Size-dependent backscattering cross section Cbak (top row), extinction-to-backscatter ratio Sp (middle 
row), linear backscattering depolarization ratio δl (bottom row) for cubes, corresponding to Nc → ∞ (cyan), and convex 
polyhedra with Nc = 10 (dark blue), Nc = 100 (green), and Nc = 1,000 (purple). Crosses denote the arithmetic mean 
over five geometric realizations (except for the cube) and the bars indicate the range between the minimum and the 
maximum value.
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closer to 1, generally decreases the linear depolarization ratio. With exception of the octahedron-like superel-
lipsoids with rve = 1.0 μm, for which the depolarization ratio was increased with increasing roundness.

The results, so far, provide us with valuable information on the importance of overall shape and roundness 
for modeling optical properties of marine aerosol. However, they are based on comparing model particles 
with a definite size. We now want to turn our attention to size-averaged optical properties of ensembles of 
randomly oriented cubes with varying degrees of roundness. We also consider three different refractive in-
dices as explained in Sec. 3. These results have been computed with the T-matrix program Tsym.

Figure 17 shows the backscattering cross section (top), the lidar ratio (center), and the linear backscatter-
ing depolarization ratio (bottom) as a function of the effective radius. The lines represent different model 
particles as indicated in the legend and figure caption. Comparison of the left and right column shows that 
the results hardly depend on whether we assume a monomodal (left) or a bimodal (right) size distribution. 
(Note the different ranges on the x-axis in either column.)
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Figure 11. Ensemble-mean of F11 (top row), F22 (center row), and F12 (bottom row) scattering matrix elements for Gaussian random cubes with a volume 
equivalent radius of rve = 0.25 μm and different correlation angle Γ (indicated by the colors) and radial standard deviation σr (columns). In each plot the 
corresponding elements of a cube (purple line) were added for comparison. The left columns shows results for σr = 0.05, the center left for σr = 0.1, the center 
right for σr = 0.15, and the right column for σr = 0.2. A correlation angle of Γ = 10° is indicated by the dark blue lines, Γ = 20° by green, Γ = 30° by light red, 
and Γ = 90° by yellow.
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Most prominently, we see that the impact of roundness on Cbak and Sp is dwarfed by that of the imaginary 
part κ of the refractive index. Increasing κ from 0 to 0.06 results in a dramatic decrease in Cbak, which causes 
a strong increase in Sp. The strength of this effect grows with increasing reff. By contrast, the corresponding 
impacts on δl are considerably more complex. The impact of roundness is, generally, of comparable magni-
tude as that of absorption. While roundness generally lowers δl for reff ≤ 1.3, μm relative to cubes with sharp 
edges, it can have a lowering effect for reff > 1.3, μm and e = n = 0.1, and an enhancing effect for e = n = 0.2. 
A change in the refractive index from 1.55 to 1.415 + 0.002i enhances depolarization over the entire size 
range (compare the green and the magenta curves). An increase of κ from 0 to 0.06 has little effect for reff ≤ 
0.9, μm, after which δl strongly drops with growing reff (compare the green and red curves).

A possible explanation for the latter effect is this. Depolarization by nonspherical particles is strongly influ-
enced by internal resonances induced inside the particle by the incident electromagnetic field. In absorbing 
particles, these resonances can become quenched. With growing size the absorption cross sections increas-
es, which gradually diminishes the impact of the internal resonance modes. This mainly leaves induced sur-
face currents on the particle surface to impact the depolarization properties of the particle. It is conceivable 
that the effect of these currents is weaker than that of the resonant modes inside the particle, which would 
explain the decrease in δl with growing particle size.
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Figure 12. As Figure 11, but for a volume-equivalent radius of rve = 0.5 μm.
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Figure 18 shows elements of the size-averaged Stokes scattering matrix as a function of scattering angle 
(x-axis) and effective radius (y-axis). A comparison with Figure 15 shows that size-averaging smooths out 
many of the resonance features encountered for monodisperse particles, especially for larger particles. 
Comparison of rows 1 and 2 reveals that the rounding of the edges has a rather small effect on both the 
(11) element (left) and the (12) element (right), and a somewhat more pronounced effect on the (22) ele-
ment (center column), especially at scattering angles around 100°–150°. By contrast, comparison of rows 
1, 3, and 4 shows that a change in the refractive index, especially an increase in its imaginary part (row 4) 
has a dramatic effect on the (22) and (12) elements. In the (22) element, the deep minimum at scattering 
angles between 100° and 150° becomes considerably more flat with increasing absorption. In the (12) ele-
ment there is a fairly shallow minimum at scattering angles around 40° for non-absorbing, large particles 
(top right). As the particles become absorbing, this minimum deepens and shifts toward a scattering angle 
around 60° (bottom right).

5. Discussion and Conclusions
Here, we want to discuss our results with a tight focus on the three questions we initially posed in the intro-
duction to this article. But before doing this, a few words on the rationale behind the use of superellipsoidal 
model particles are in order. As demonstrated by Bi, Lin, Liu, et al. (2018), this model covers a large range 
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Figure 13. As Figure 11, but for a volume-equivalent radius of rve = 1.0 μm.
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of depolarization ratios by varying the aspect ratio and the roundness parameters—see Figure 6b in their 
paper. Thus, it satisfies the third criterion of a versatile model particle as stated in the introduction. Howev-
er, superellipsoids also introduce a large number of free parameters (two roundness and two aspect ratios). 
Thus, they seem to violate the second criterion. For this reason, we limit the number of free parameters 
by setting the two roundness parameters equal to each other, n = e, and by fixing the two aspect ratios, 
a/b = a/c = 1. This leaves us with a single free parameter, the roundness parameter n. This subset of superel-
lipsoids comprises cubes and rounded cubes (as well as octahedra and rounded octahedra). Marine aerosols 
are dominated by sodium chloride, for which cubes are a canonical reference shape. Thus, model particles 
that bear a close resemblance to perfect cubes are an obvious choice in this case. We have, therefore, mainly 
considered superellipsoids that deviate only mildly from this reference geometry (with the exception of the 
octahedral particles).

Our first question is whether superellipsoids can be used to simultaneously simulate the depolarization 
ratio and the lidar ratio of marine aerosol. Our findings are best illustrated in the right column of Figure 17. 
The effective radii considered here (1.0–1.6 μm) cover a range typical for marine aerosol in the atmosphere 
at low to moderate wind speeds. (Note that the size distribution in (Bi, Lin, Liu, & Zhang, 2018) had a mean 
geometric radius of only 0.1 μm, which was selected in order to reproduce laboratory measurements by 
(Sakai et al., 2010)). In our simulations, the depolarization ratio of non-absorbing marine aerosols (black, 
blue, and green lines) varies with size and roundness parameter in the range δl = 0.14–0.20, while the lidar 
ratio varies between Sp = 12–20 sr. This does lie within the range of reported field measurements listed 
in Table 1, which is an encouraging result. Optically softer, weakly absorbing aerosols (purple line) vary 
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Figure 14. Size-dependent backscattering cross sections Cbak (left column), extinction-to-backscatter ratios Sp (middle column), and linear depolarization ratio 
δl (right column) of Gaussian random cubes with different correlation angle Γ and radial standard deviation σr. The different values of Γ are indicated by color 
(with colors as in Figure 11), and the different values of σr are presented in different rows (first row: σr = 0.05, second row: σr = 0.1, third row: σr = 0.15, and 
bottom row: σr = 0.2). For comparison, each panel shows the corresponding values of cubes in purple. Crosses denote the arithmetic mean over five geometric 
realizations (except for the cube) and the bars indicate the range between the minimum and the maximum value.
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between δl = 0.17–0.22 and Sp = 25–33 sr. The depolarization ratios are still in the range of reported field 
values, while the lidar ratios are at and above the high end. It is possible that a real part of the refractive 
index of 1.415, which is even lower than that of pure DMS, is untypically low for marine aerosol. Clearly, for 
gaining more confidence in the superellipsoid model it will be highly desirable to obtain more simultaneous 
field measurements of δl and Sp, as well as a more clearly defined range of typical values of the refractive 
index.

A geometrically idealized model, such as superellipsoids, is not expected to accurately reproduce each and 
every observation under atmospheric conditions. Rather, one aims at developing a model that will work on 
average. By this we mean that observations will scatter about the model predictions with a certain variance 
and, hopefully, with minimum bias. To employ such an optics model in inverse methods it is crucial to 
carefully quantify the model's error variance. Randomized geometries are the most promising candidates 
for obtaining realistic estimates of the error variance, as we know from detailed studies on mineral dust 
aerosols (Kahnert et al., 2020). Thus, our second question is which randomization model would be a good 
candidate for quantifying model errors. To address this question, we compare Figures 10 and 14.
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Figure 15. (11) (top row), (22) (center row), and (12) (bottom row) elements of the normalized scattering matrix F for different superellipsoids with 
n = e = 0.0, corresponding to a cube (cyan), n = e = 0.1 (dark green), n = e = 0.2 (light green), n = e = 1.8 (light red), n = e = 1.9 (purple), and n = e = 2.0, 
corresponding to a octahedron (wine). The (22) and (12) elements are normalized with respect to the (11) element. The columns represent the three different 
volume-equivalent radii rve = 0.25 μm (left column), rve = 0.5 μm (center column), and rve = 1.0 μm (right column).
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The results obtained for convex polyhedra and for Gaussian random cubes could not have been more dif-
ferent. The ones for convex polyhedra in Figure 10 scatter about the reference results for cubes. There are 
deviations both among different stochastic realizations for fixed Nc as well as among different values of Nc. 
We note that polyhedra with Nc = 10 may be a bit of an extreme case that deviate substantially from cubes, 
while results obtained for Nc = 1,000 are very similar to cubes, and there is hardly any stochastic variation in 
the optical properties among different realizations of the geometry. By contrast, prisms with Nc = 100 seem 
to provide a good model for simulating random errors related to the geometric variability of marine aerosol. 
A promising approach may be to combine prisms generated for different values of Nc in the vicinity of 100 
with different stochastic realizations of the geometry.

By contrast, Gaussian random surface perturbation (Figure 14) significantly increase δl relative to the cu-
bical reference particles. The larger the radial standard deviation σr and the smaller the correlation angle 
Γ, the more the depolarization ratio is enhanced. Thus, this randomization model appears to be unsuitable 
for modeling random errors. This a remarkable and entirely unexpected result. It was earlier found that 
Gaussian random perturbations of spheroids are an excellent approach to model the error variance of the 
spheroid model for mineral dust (Kahnert et al., 2020).

Our third question is how the sensitivity of the optical properties due to variations in geometry and 
due to variations in the dielectric properties compare to each other. Returning to Figure 17, we see that 
both δl and Sp vary significantly with refractive index. A reduction of the real part from 1.55 to 1.415 
can significantly enhance both δl and Sp. An increase in the imaginary part can strongly reduce δl while 
enhancing Sp. We learn from this that the refractive index is both an important tuning parameter of 
the model, and an essential source of uncertainty that needs to be accounted for in the error estimates. 
However, more reliable information from observations would be needed to narrow down the range 
of real and imaginary parts of the refractive index that can be considered representative for marine 
aerosol.

In conclusion, we find that superellipsoids that resemble cubes with rounded edges are a promising 
candidate for simultaneously modeling the backscattering coefficient and the lidar ratio of dry ma-
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Figure 16. Size-dependent backscattering cross section Cbak (top row), extinction-to-backscatter ratio Sp (middle row), 
linear backscattering depolarization ratio δl (bottom row) for superellipsoids with different roundness parameters n. 
The colors are as in Figure 15. In order to distinguish the values more easily, the radius values were slightly shifted with 
respect to the x-axis.
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rine aerosol. Our results support this conclusion for effective radii that are representative for marine 
aerosol generated at low to moderate wind speed. Further studies will need to rely on more extensive 
data from measurements for comparison. Randomized cuboidal polyhedra can be a useful model for 
simulating model uncertainties. Gaussian random perturbations of a cube result in an enhancement 
of the depolarization ratio rather than in random variations. Therefore, this model does not seem to 
be suitable for simulating random errors. The uncertainty in the refractive index strongly impacts the 
optical properties and needs to be accounted for in the error estimates. It is highly desirable to obtain 
more observation-based information to constrain the range of realistic values of the refractive index of 
marine aerosol.

Here, only crystalline sea-salt aerosol without any water coating was investigated. Adding a liquid water 
coating would extend the applicability of the irregular model particles in the ADDA computations discussed 
here towards higher values of relative humidity. Further laboratory studies combining measurements of the 
optical and the microphysical properties of dried sea-salt aerosol particles can provide additional guidance 
regarding the choice and/or refinement of particle models.
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Figure 17. Size-averaged results for Cbak (top), Sp (center), and δl (bottom) as a function of the effective radius reff. The lines show non-absorbing cubes with 
sharp edges (black), non-absorbing cubic superellipsoids with e = n = 0.1 (blue) and n = e = 0.2 (green), as well as superellipsoids (e = n = 0.2) with refractive 
indices m = 1.415 + 0.002i (magenta) and m = 1.55 + 0.06i (red). The left row shows results averaged over log-normal monomodal size distributions, the right 
one over bimodal log-normal size distributions as explained in the text.
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Appendix A: Parameterization of Superellipsoids in Spherical Coordinates
In Waterman's T-matrix method, we need to evaluate vector products of vector spherical wavefunctions 

        , , , , , ,j
l m q r , where l, m, q are the degree, order, and mode, and where j denotes the kind of the 

vector wavefunctions. The surface integrals are evaluated at the surface r(θ, ϕ) of the particle. Thus, to use 
Waterman's method we need to have a parameterization of the particle surface in spherical coordinates, as 
well as the parameterization's partial derivatives. We are not aware of any publications that present such a 
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Figure 18. Elements of the Stokes scattering matrix as a function of scattering angle and effective radius reff. The three columns show the elements   log  F11 
(left), F22/F11 (center), and F12/F11 (right). The rows show results for refractive indices m = 1.55 (rows 1 and 2), 1.415 + 0.002i (row 3), and 1.55 + 0.06i (row 4), 
as well as for roundness parameters e = n = 0 (rows 1) and e = n = 0.2 (row 2–4).
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parameterization, certainly not in the light-scattering literature. Thus, we derive this parameterization here 
in the appendix.

We start from the implicit Equation 2 for the surface of a superellipsoid given in Cartesian coordinates by

 
   
 
 

/2/ 2/ 2/

1.

e ne e n
x y z
a b c

 (A1)

The parameters a, b, c, n, and e are positive real numbers. a, b, and c characterize the extent of the parti-
cle along the three Cartesian axes, n is a roundness parameter in the polar (north-south) direction, and 
e is a roundness parameter in the azimuthal (east-west) direction. The superellipsoids are convex for n, 
e ∈ (0, 2).

An explicit surface parameterization of superellipsoids can be found in, for example, Wriedt (2002). That 
parameterization can be stated somewhat more rigorously by introducing the following bracket notation:

   [ ] sgn( ) | | . (A2)

Then an explicit parameterization is given by

 [cos ] [cos ]n ex a u v (A3)

 [cos ] [sin ]n ey b u v (A4)

 [sin ]nz c u (A5)

      [ / 2, / 2], [ , ].u v (A6)

It is elementary to verify by direct substitution into Equation (A1) that this parameterization, indeed, de-
scribes the surface of a superellipsoid. However, (u, v) are not spherical coordinates, as required by Water-
man's T-matrix method.

To derive a parameterization in spherical coordinates (θ, ϕ), we need a parameter transformation (u, v) ↦ 
(θ, ϕ). To this end, we compute

    tan [tan( )] , ,ey b v k k
x a

 (A7)

or

 
 

   
 

1/

tan( ) tan ,
e

av k
b

 (A8)

where we explicitly indicated the periodicity of the tangent. The choice of k becomes important when com-
puting ϕ = arctan(y/x). Making appropriate case distinctions for the four quadrants, we find that k = 0 for 
ϕ ∈ [0, π/2), k = 1 for ϕ ∈ [π/2, π), k = −1 for ϕ ∈ [π, 3π/2), and k = −2 for ϕ ∈ [3π/2, 2π). Thus we obtain 
the following parameter transformation

  
        

1/

( ) arctan tan
e

av k
b

 (A9)
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 
  
  
  

 
   
 

0 : [0, / 2)
1 : [ / 2, )
1 : [ ,3 / 2)
2 : [3 / 2,2 )

k (A10)

To obtain an analogous parameter transformation for u, we consider

 


  
2 2 1/22 2 2 21 [cos ]tan | cos | | sin | ,

[sin ]

n
e e

n
x y u a v b v

z c u
 (A11)

or


1[tan ] cot ,nu w
c

 (A12)

where

  2 2 2 2( ( )) | cos | | sin |e ew v a v b v (A13)

To solve for u, we make a case distinction. For θ ∈  [0, π/2), cot θ  >  0. Then we must have tan u  >  0, 
which implies u  ∈  [0, π/2). Then  1/arctan{(1 / )cot } nu c w . Similarly, for θ  ∈  [π/2, π) we find 

   1/arctan{ (1 / )cot } nu c w . This can be summarized as follows

   
 

  
 

1/

( , ) arctan cot ( ( ))
n

Su S w v
c

 (A14)

 
  

   

1 : [0, / 2)
1 : [ / 2, )

S (A15)

Equations A9 and A14 in conjunction with Equations A10, A13, and A15 provide us with the desired parame-

ter transformation (u, v) ↦ (θ, ϕ). Substitution into Equations A3–A5 in conjunction with   2 2zr x y z  
gives us the required parameterization r(θ, ϕ) of the superellipsoid surface in spherical coordinates.

To evaluate the surface integrals in Waterman's method, we also need to express the surface element dσ on 
the surface of the particle in spherical coordinates, that is, we need to obtain dσ = |∂r/∂θ × ∂r/∂ϕ| dθ dϕ. 
In principle, we could now proceed and compute expressions such as ∂r/∂θ = (∂r/∂u) (∂u/∂θ). It turns out 
that we encounter singularities in terms such as ∂u/∂θ. Therefore, we do well to first bring the parameter 
transformations into a more tractable form.

Inspection of Equations A3–A5 shows that we never need the parameters u and v directly, but only cos u, 
sin u, cos v and sin v. We can make use of the identities


 2

sin(arctan )
1

xx
x

 (A16)


 2

1cos(arctan ) ,
1

x
x

 (A17)

and we abbreviate

 
        

     

1/ 1/

cot cot
n n

w wp S
c c

 (A18)
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
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This yields
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whence
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and
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where we have used the definition of w in Equation A13 as well as Equations A20 and A21. Backsubstitu-
tion of the definitions of p and q, Equations A18 and A19, into these expressions yields
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The expression for r is manifestly regular for all θ. (Recall that n > 0.) Also, as we approach a singularity of 
tan ϕ, w approaches b2. Thus, w and r are regular for all values of ϕ.

It is now straightforward, although a bit lengthy, to compute ∂r/∂θ and ∂r/∂ϕ=(∂r/∂w) (∂w/∂ϕ). With the 
abbreviation

 2tan ,t (A28)

The final result is
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∂r/∂ϕ is regular for all values of θ. ∂r/∂θ is also regular for all θ, provided that n < 2. Further, it is straight-
forward to show that the term dependent on t = tan2ϕ approaches 0 as t → ∞ provided that e < 2. Thus, for 
convex particles (0 < n, e < 2) the partial derivatives of r are regular for all values of θ and ϕ.

The surface parameterizations derived here, as well as their partial derivatives, have been implemented 
into the most recent version of the Tsym program. In order to compute the volume-equivalent radius of the 
particles, one needs the volume of the superellipsoids, which is given by Wriedt (2002)

   
    
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1, , ,

2 2 2
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where the beta function B is defined in terms of the gamma function Γ according to


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Data Availability Statement
The data shown in the figures are available under: http://doi.org/10.5281/zenodo.3977897. The release ver-
sion of the Tsym code is publicly available under http://doi.org/10.5281/zenodo.4304389. Access to the most 
recent version Tsym 6.6α that contains the superellipsoids can be obtained by contacting the authors.
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