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Abstract. Severe precipitation events occur rarely and are
often localised in space and of short duration, but they are
important for societal managing of infrastructure. Therefore,
there is a demand for estimating future changes in the statis-
tics of the occurrence of these rare events. These are often
projected using data from regional climate model (RCM)
simulations combined with extreme value analysis to obtain
selected return levels of precipitation intensity. However, due
to imperfections in the formulation of the physical parame-
terisations in the RCMs, the simulated present-day climate
usually has biases relative to observations; these biases can
be in the mean and/or in the higher moments. Therefore, the
RCM results are adjusted to account for these deficiencies.
However, this does not guarantee that the adjusted projected
results will match the future reality better, since the bias may
not be stationary in a changing climate. In the present work,
we evaluate different adjustment techniques in a changing
climate. This is done in an inter-model cross-validation set-
up in which each model simulation, in turn, performs pseudo-
observations against which the remaining model simulations
are adjusted and validated. The study uses hourly data from
historical and RCP8.5 scenario runs from 19 model simu-
lations from the EURO-CORDEX ensemble at a 0.11◦ res-
olution. Fields of return levels for selected return periods
are calculated for hourly and daily timescales based on 25-
year-long time slices representing the present-day (1981–
2005) and end-21st-century (2075–2099). The adjustment
techniques applied to the return levels are based on ex-

treme value analysis and include climate factor and quantile-
mapping approaches. Generally, we find that future return
levels can be improved by adjustment, compared to obtain-
ing them from raw scenario model data. The performance
of the different methods depends on the timescale consid-
ered. On hourly timescales, the climate factor approach per-
forms better than the quantile-mapping approaches. On daily
timescales, the superior approach is to simply deduce future
return levels from pseudo-observations, and the second-best
choice is using the quantile-mapping approaches. These re-
sults are found in all European subregions considered. Ap-
plying the inter-model cross-validation against model ensem-
ble medians instead of individual models does not change the
overall conclusions much.

1 Introduction

Severe precipitation events typically occur either as strati-
form precipitation of moderate intensity or as intense lo-
calised cloudbursts lasting up to a few hours only. Such ex-
treme events may cause flooding, with the risk of loss of
life and damage to infrastructure. It is expected that future
changes in the radiative forcing from greenhouse gases and
other forcing agents will influence large-scale atmospheric
conditions, such as air mass humidity, vertical stability, the
formation of convective systems and typical low pressure
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tracks. Therefore, the statistics of the occurrence of severe
precipitation events will also most likely change.

Global climate models (GCMs) are the main tools for es-
timating future climate conditions. A GCM is a global repre-
sentation of the atmosphere, the ocean and the land surface
and the interaction between these components. The GCM is
then forced with observed greenhouse gas concentrations, at-
mospheric compositions, land use, etc., to represent the past
and present climate and with stipulated scenarios of future
concentrations of radiative forcing agents to represent the fu-
ture climate.

Present state-of-the art GCMs from the Coupled Model In-
tercomparison Project Phase 5 (CMIP5; Taylor et al., 2012)
and the recent Coupled Model Intercomparison Project Phase
6 (CMIP6; Eyring et al., 2016) typically have a grid spacing
of around 100 km or even more. This resolution is too coarse
to describe the effect of regional and local features, such
as mountains, coastlines and lakes, and to adequately de-
scribe convective precipitation systems (Eggert et al., 2015).
To model the processes on smaller spatial scales, dynamical
downscaling is applied. Here, the atmospheric and surface
fields from a GCM simulation are used as boundary con-
ditions for a regional climate model (RCM) over a smaller
region, with a much finer grid spacing, which is typically
around 10 km or even less at present.

An alternative to dynamical downscaling is statistical
downscaling. Here, large-scale circulation patterns (e.g. the
North Atlantic Oscillation) are related to small-scale vari-
ables, such as precipitation mean at a station. One assumes
that the large-scale circulation pattern is modelled well by
the GCM, and therefore, the approach is called perfect prog-
nosis. Using the relationship with the small-scale variables
calibrated on observations, one can obtain modelled local-
scale variables (present-day and future) from the modelled
large-scale patterns. A recent overview of these methods and
validation of them can be found in Gutiérrez et al. (2019).

The ability of present-day RCMs to reproduce ob-
served extreme precipitation statistics on daily and sub-daily
timescales is essential and has been of concern. Earlier stud-
ies analysing this topic have mostly focused on a particular
country, probably due to the lack of sub-daily observational
data covering larger regions, such as, for example, Europe.
Thus, Hanel and Buishand (2010), Kendon et al. (2014), Ols-
son et al. (2015) and Sunyer et al. (2017) studied daily and
hourly extreme precipitation in different European countries
and reached similar conclusions. First, that the bias of ex-
treme statistics decreases with a smaller grid spacing of the
model, and second, that extreme statistics for a 24 h dura-
tion are satisfactorily simulated with a grid spacing of 10 km,
while 1 h extreme statistics exhibit substantial biases even at
this resolution. Recently, Berg et al. (2019) evaluated high-
resolution RCMs from the EURO-CORDEX ensemble (Ja-
cob et al., 2014) also used here and reached similar conclu-
sions for several countries across Europe. They found that

RCMs underestimate hourly extremes and give an erroneous
spatial distribution.

Extreme convective precipitation of a short duration is thus
one of the more challenging phenomena to physically repre-
sent accurately in RCMs. The reason is that convective events
take place on a spatial scale comparable to the RCM grid
spacing of, presently, around 10 km. Therefore, the convec-
tive plumes cannot be directly modelled. Instead, the effects
of convection are parameterised, i.e. modelled as processes
on larger spatial scales (Arakawa, 2004). Thus, the inability
to reproduce these short-duration extremes can be explained
by the imperfect parameterisation of a sub-grid-scale convec-
tion (Prein et al., 2015), which generally leads to a too early
onset of convective rainfall in the diurnal cycle and the sub-
sequent dampening of the build-up of convective available
potential energy (Trenberth et al., 2003).

Thus, even RCMs with their small grid spacing may ex-
hibit systematic biases for variables related to convective pre-
cipitation. If there is a substantial bias, we should consider
adjusting for this in a statistical sense before conducting any
further data analysis. Such adjustment techniques are thor-
oughly discussed, including requirements and limitations, in
Maraun (2016) and Maraun et al. (2017). There are basi-
cally two main adjustment approaches. In the delta change
approach, a transformation is established from the present
to the future climate in the model run. This transformation is
then applied to the observations to obtain the projected future
climate. In the bias correction approach, a transformation is
established from present model climate data to the observed
climate, and this transformation is then applied to the future
model climate to obtain the projected future climate.

Both adjustment approaches come in several varieties. In
the simplest one, the transformation consists of an adjust-
ment of the mean, in the case of precipitation, by multiplying
the mean by a factor. In the more elaborate flavour, the trans-
formation is defined by quantile mapping, which also pre-
serves the higher moments. Quantile mapping can use either
empirical quantiles or analytical distribution functions. The
ability of quantile mapping to reduce bias has been demon-
strated for daily precipitation in the present-day climate by
using observations which are split into calibration and vali-
dation samples (Piani et al., 2010; Themeßl et al., 2011).

Bias adjustment techniques originate in the field of
weather and ocean forecast modelling, where they are known
as model output statistics (MOSs). Here, output from a fore-
cast model is adjusted for model deficiencies and local fea-
tures not explicitly resolved by the model. Applying similar
adjustment techniques to climate model simulations, how-
ever, has a complication not present in forecast applications.
Climate models are set up and tuned to present-day condi-
tions and verified against observations but are then applied
to future, changed conditions without any possibility of di-
rectly verifying the model’s performance under these condi-
tions. Therefore, showing that bias adjustment works for the
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present-day climate is a necessary but insufficient condition
for the adjustment to work in the changed climate.

A central concept of adjustment methods is the assumption
of the stationarity of the bias. For bias correction, this means
that the transformation from model to observations is un-
changed from the present-day climate to the future climate,
while, for delta change, the transformation from the present-
day climate to future climate is unchanged from model to ob-
servation. In the ideal case of stationarity being fulfilled, the
adjustment methods will work perfectly and produce perfect
future projections. If stationarity is not fulfilled, adjustments
may improve projections or, in the worst cases, may degrade
projections, compared to using raw model output. We also
note that the adjustment methods themselves may influence
the climate change signal of the model, depending on the bias
and the method used (Berg et al., 2012; Haerter et al., 2011;
Themeßl et al., 2012).

Stationarity has been debated in recent years in the litera-
ture (e.g. Boberg and Christensen, 2012; Buser et al., 2010).
Kerkhoff et al. (2014) review and discuss the following two
hypotheses: (1) constant bias, which is unchanged between
the present-day and future (i.e. stationarity), and (2) constant
relation, where the bias varies linearly with the signal. Van
Schaeybroeck and Vannitsem (2016) used a pseudo-reality
setting with a simplified model and found large changes in
the bias between the present-day and future for many vari-
ables and a violation of both constant bias and constant re-
lation hypothesis. Chen et al. (2015) concluded that precip-
itation bias is clearly non-stationary over North America in
that variations in bias are comparable to the climate change
signal. Velázquez et al. (2015) used a pseudo-reality setting
involving two models and concluded that the constancy of
bias was violated for both precipitation and temperature on
monthly timescales. Hui et al. (2019) used a pseudo-reality
setting with GCMs and found a significant non-stationarity
of bias for annual and seasonal temperatures. Besides, they
point to a large effect on non-stationarity from internal vari-
ability.

To thoroughly validate adjustment methods, both a cali-
bration data set and an independent data set for validation
are needed. There are two different approaches to obtain this.
In split-sample testing, the observations are divided into cal-
ibration and validation parts, often in the form of a cross-
validation (e.g. Gudmundsson et al., 2012; Li et al., 2017a, b;
Refsgaard et al., 2014; Themeßl et al., 2011). One variant is
differential split-sample testing (Klemeš, 1986), where the
split in calibration and validation parts is based on clima-
tological factors, such as wet and dry years, encompassing
climate changes and variations into the validation.

An alternative approach, which we use here, is inter-model
cross-validation as pursued by Maraun (2012), Räisänen and
Räty (2013) and Räty et al. (2014), among others. The ratio-
nale here is that the members of a multi-model ensemble of
simulations represent different descriptions of the physics of
the climate system, with each of them being not too far from

the real climate system. Thus, one member of the ensemble
alternatively plays the role of the pseudo-observation against
which the remaining adjusted models are validated. Thus,
the trick is that we know both present and future pseudo-
observations.

The advantage of inter-model cross-validation is that the
adjustment methods are calibrated under present-day condi-
tions and validated under future climatic conditions. There-
fore, it embraces modelled physical changes between present
and future climate as, for instance, a shift in the ratio be-
tween stratiform and convective precipitation. In this respect,
it is a more realistic setting than validation based on split-
sample test. Also, model and pseudo-observations have the
same spatial scale, thus avoiding comparing pointwise obser-
vations with area-averaged model data as is done in the split-
sample testing. On the other hand, the method assumes that
the modelled present-day is not too different from observa-
tions. If this is violated, the method will give error estimates
that are too optimistic compared to what can be expected in
the real World. Please also see the discussion in Sect. 5.2.

Inter-model cross-validation has been applied on daily pre-
cipitation to evaluate different adjustment methods (Räty
et al., 2014). Here, we apply a similar methodology,
Europe-wide, to extreme precipitation on hourly and daily
timescales. This has been made possible with the advent of
the EURO-CORDEX, a large ensemble of high-resolution
RCM simulations with precipitation at an hourly time res-
olution. Being more specific, we apply the standard extreme
value analysis to the ensemble of model data for present-day
and end-21st-century conditions to estimate return levels for
daily and hourly duration. Then, we will apply inter-model
cross-validation on these return levels in order to address the
following questions:

1. Do adjusted return levels perform better, according to
the inter-model cross-validation, than using raw model
data from scenario simulations?

2. Is there any difference in performance between different
adjustment methods?

3. Are there systematic differences between point 1 and 2,
depending on the daily and hourly duration?

4. Are there regional differences across Europe in the per-
formance of the different adjustment methods?

Giving qualified answers to these questions can serve as
important guidelines for analysis procedures for obtaining
future extreme precipitation characteristics.

The rest of the paper contains a description of the EURO-
CORDEX data (Sect. 2) and a description of the methods
used (Sect. 3). Then follow the results (Sect. 4), a discussion
of these (Sect. 5) and, finally, the conclusions (Sect. 6).
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Table 1. Overview of the 19 EURO-CORDEX GCM–RCM combinations used. The rows show the GCMs while the columns show the RCMs.
The full names of the RCMs are SMHI-RCA4, CLMcom-CCLM4-8-17, KNMI-RACMO22E, DMI-HIRHAM5, MPI-CSC-REMO2009
and CLMcom-ETH-COSMO-crCLIM-v1-1. Each GCM–RCM combination used is represented by a number (1, 3 or 12) indicating which
realisation of the GCM is used for the particular simulation.

GCM RCM

RCA CCLM RACMO HIRHAM REMO COSMO

ICHEC-EC-EARTH r12 r1 r3
MOHC-HadGEM2-ES r1 r1 r1
CNRM-CERFACS-CNRM-CM5 r1 r1
MPI-M-MPI-ESM-LR r1 r2 r1 r1 r1
IPSL-IPSL-CM5A-MR r1
NCC-NorESM1-M r1 r1 r1
CCCma-CanESM2 r1
MIROC-MIROC5 r1

2 EURO-CORDEX data

The model simulations used here have been performed
within the framework of EURO-CORDEX (Jacob et al.,
2014; http://euro-cordex.net, last access: January 2021),
which is an international effort aimed at providing RCM cli-
mate simulations for a specific European region (see Fig. 1)
in two standard resolutions with a grid spacing of 0.44◦

(EUR-44;∼ 50km) and 0.11◦ (EUR-11;∼ 12.5km), respec-
tively. All GCM simulations driving the RCMs follow the
CMIP5 protocol (Taylor et al., 2012) and are forced with his-
torical forcing for the years 1850–2005, followed by the rep-
resentative concentration pathway (RCP) 8.5 scenario for the
years 2006–2100 (until 2099 only for HadGEM-ES).

We analyse precipitation data in hourly time resolu-
tions from 19 different GCM–RCM combinations from the
EUR-11 simulations shown in Table 1, and we analyse
two 25-year-long time slices from each of these simula-
tions, namely a present-day (years 1981–2005) and end-21st-
century (years 2075–2099) time slice.

All GCM–RCM combinations we use are represented by
one realisation only, and therefore, the data material used
represents 19 different possible realisations of climate model
physics, though we acknowledge that some GCMs/RCMs
might originate from the same or similar model codes
and, therefore, may not be fully independent. The EURO-
CORDEX ensemble includes a few simulations which do not
use the standard EUR-11 grid. These were not included in the
analysis since they should have been re-gridded to the EUR-
11 grid, which would dampen extreme events, thus introduc-
ing an unnecessary error source.

Generally, GCM results are quite comparable to reality,
and many validation studies of GCMs exist that also keep an
eye on Europe (e.g. McSweeney et al., 2015). We are aware
of the use in some papers of procedures for selecting how to
choose subsets of available GCMs (e.g. McSweeney et al.,
2015; Rowell, 2019). There is, however, no simple quality

Figure 1. Map showing the EURO-CORDEX region (outer frame)
with elevation in colours. PRUDENCE subregions (Christensen and
Christensen, 2007) used in the analysis are also shown. Note: BI –
British Isles; IP – Iberian Peninsula; FR – France, ME – mid-
Europe; SC – Scandinavia; AL – Alps; MD – Mediterranean; EA –
Eastern Europe. Red cross marks the point used in Fig. 4.

index that can be generally applied. Any discrimination of
GCMs depends on area, season and the meteorological field
and property being investigated (Gleckler et al., 2008; e.g.
their Fig. 9). Furthermore, these tests and selection proce-
dures are based on subjective criteria and come with major
caveats that impact the uncertainty range largely (Madsen
et al., 2017). We therefore choose, in accordance with most
other similar studies, to use an ensemble of opportunity for
the present study.
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3 Methods

3.1 Duration

Extreme precipitation statistics are often described as a
function of the timescale involved as intensity–duration–
frequency or depth–duration–frequency curves (e.g.
Overeem et al., 2008). We consider two timescales or
durations. One is a duration of 1 h, which is simply the time
series of hourly precipitation sums available in each RCM
grid point. The other is a duration of 24 h, where a 24 h sum
is calculated in a sliding window with a 1 h time step. We
will refer to these as hourly and daily duration, respectively.
Our daily duration corresponds to the traditional climato-
logical practice of reporting daily sums but allows heavy
precipitation events to occur over 2 consecutive days. We
also emphasise that the duration, as defined here, is not the
actual length of the precipitation events in the model data
but merely a concept for defining timescales.

3.2 Extreme value analysis

Extreme value analysis (EVA) provides methodologies to es-
timate high quantiles of a statistical distribution from obser-
vations. The theory relies on the fundamental convergence
properties of the time series of extreme events; for details,
we refer to Coles (2001).

There are two main methodologies in EVA for obtaining
estimates of the high percentiles and the corresponding re-
turn levels. In the classical or block maxima method, a gen-
eralised extreme value distribution is fitted to the series of
maxima over a time block, which is usually 1 year. Alterna-
tively, in the peak-over-threshold (POT) or partial-duration
series method, which is used here, all peaks with maximum
above a (high) threshold, x0, are considered. The peaks are
assumed to occur independently at an average rate per year
of λ0. To ensure independence between peaks, a minimum
time separation between peaks is specified. Theory tells us
that, when the threshold goes to infinity, the distribution of
the exceedances above the threshold, x− x0, converges to a
generalised Pareto distribution for which the cumulative dis-
tribution function is as follows:

G(x− x0)= 1−
(

1+ ξ
x− x0

σ

)− 1
ξ

,x > x0.

The parameter σ is the scale and a measure of the width of
the distribution. The parameter ξ is the shape and describes
the character of the upper tail of the generalised Pareto dis-
tribution (GPD); ξ > 0 implies a heavy tail, which usually
is the case for extreme precipitation events, while ξ < 0 im-
plies a thin tail. Note that, quite confusingly, an alternative
sign convention of ξ occurs in the literature (e.g. Hosking
and Wallis, 1987).

If we now consider an arbitrary level x with x > x0, the
average number of exceedances per year of x will be the fol-
lowing:

λx = λ0 [1−G(x− x0)] . (1)

The T year return level, xT , is defined as the precipitation
intensity, which is exceeded on average once every T years,
as follows:

λxT T = 1,

and by combining with Eq. (1) we obtain an expression for
the return level, xT , as follows:

λ0 [1−G(xT − x0)]T = 1,

from which we calculate the following:

xT =G
−1
(

1−
1
λ0T

)
+ x0. (2)

Data points to be included in the POT analysis can be se-
lected in two different ways. Either the threshold x0 is spec-
ified and λ0 is then a parameter to be determined or, alterna-
tively, λ0 is specified and x0 is determined as a parameter. We
choose the latter approach, since it is most convenient when
working with data from many different model simulations.

Choosing λ0 is a point to consider. Too high a value would
include too few data points in the estimation, and too low
a value implies the risk that the exceedances xT − x0 can-
not be considered as being distributed according to GPD. We
choose λ0 = 3 in accordance with Berg et al. (2019), which
gives 75 data points for an estimation of the 25-year-long
time slices. Hosking and Wallis (1987) investigated the es-
timation of parameters of the GPD and, based on this, warn
against using the often-applied maximum likelihood estima-
tion for a sample size below 500. Instead, they recommend
probability-weighted moments, and we have followed this
advice here.

We required a minimum of a 3 and 24 h separation be-
tween peaks for a 1 and 24 h duration, respectively. This is in
accordance with Berg et al. (2019), and furthermore, synop-
tic experience tells us that this will ensure that neighbouring
peaks are from independent weather systems. We found only
a weak influence of these choices on the results of our anal-
ysis.

In practical applications of EVA, the parameters are esti-
mated with large uncertainties due to the limited length of
the time series. The threshold has the smallest relative uncer-
tainty, the scale has a larger relative uncertainty and the shape
has the largest relative uncertainty. Therefore, the relative un-
certainty of the return levels also increase with increasing T ,
as can be seen from Eq. (2).

3.3 Bias adjustments and extreme value analysis

The delta change and bias correction approaches were in-
troduced in general terms in Sect. 1. Now we will formulate
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EVA-based analytical quantile mapping based versions of the
two approaches. In what follows, OT is the T year return
level estimated from present-day pseudo-observations, while
CT (control) and ST (scenario) denote the corresponding re-
turn levels, estimated from present-day and end-21st-century
model data, respectively. Finally, PT (projection) denotes the
end-21st-century return level after a bias adjustment has been
applied.

3.3.1 Climate factor on the return levels (FAC)

The simplest adjustment approach is to assume a climate fac-
tor on the return level (FAC) as follows:

PT = ST /CT︸ ︷︷ ︸
Delta change
climate factor

·OT = OT /CT︸ ︷︷ ︸
Bias correction
climate factor

· ST .

We note that the delta change and bias correction approach
are identical for the FAC method.

3.3.2 Analytical quantile mapping based on EVA

In the EVA-based quantile mapping, two POT-based extreme
value distributions with different parameters are matched.
Being more specific, we want to construct a transformation
from x→ y defined by the requirement that exceedance rates
above x and y, respectively, are equal for any x as follows:

λx = λy .

This implies, according to Eq. (1), that in the following:

λ0x [1−Gx (x− x0)]= λ0y
[
1−Gy (y− y0)

]
,

where Gx is the GPD distribution of the exceedances, x−x0
and λ0x are the associated exceedance rate, and Gy and λ0y
are the similar entities for y.

To simplify, we let λ0x = λ0y (see Sect. 3.2) and, therefore,
obtain the following:

Gx (x− x0)=Gy (y− y0) ,

from which we obtain the following transformation:

y = y0+G
−1
y (Gx (x− x0)) . (3)

For the delta change (DC) approach, the modelled GPD dis-
tribution functions for present-day and end-21st-century con-
ditions are quantile mapped, and the transformation obtained
this way is then applied to return levels determined from
present-day pseudo-observations OT . Thus, the correspond-
ing projected T year return level is the following, according
to Eq. (3):

PT = S0+G
−1
S (GC (OT −C0)) ,

Table 2. Overview of methods used in the inter-comparison.

OBS (Pseudo-) observations (reference method)
SCE Raw RCM scenario (reference method)
FAC Climate factor on return levels
DC Quantile-mapped delta change based on EVA
BC Quantile-mapped bias correction based on EVA

whereGC andGS are the GPD cumulative distribution func-
tions for the data modelled on the present-day (control) and
end-21st-century (scenario), respectively, and C0 and S0 are
the corresponding threshold values.

For the bias correction (BC) approach, the present-day
(control) and pseudo-observed GPD cumulative distribution
functions are quantile mapped to obtain the model bias,
which is then applied, using Eq. (3), to the modelled return
levels for end-21st-century (scenario).

PT =O0+G
−1
O (GC (ST −C0)) ,

where GO is the GPD cumulative distribution function for
the observations and O0 the corresponding threshold.

3.3.3 Reference adjustment methods

The performance of the bias adjustment methods described
above will be compared with the performance of two ref-
erence adjustment methods, which are defined below. This
is similar to what is practised when verifying predictions,
where the performance of the prediction should be superior
to the performance of reference predictions such as persis-
tence or climatology.

We choose two reference methods. One reference is to
simply use, for a given model, the return level calculated
from (pseudo-) observations as the projected return level
(OBS) as follows:

PT =OT .

Another reference is to use the raw scenario model output
data without any adjustment (SCE) as follows:

PT = ST .

For an overview of the methods, see Table 2.

3.4 The inter-model cross-validation procedure in
detail

The inter-model cross-validation goes in detail as follows.
Each of the N models are successively regarded as be-
ing pseudo-observations. The individual adjustment meth-
ods are calibrated on the present-day parts of the pseudo-
observations and model return levels (present-day and end-
21st-century) as appropriate, depending on whether it is a
bias correction or delta change method. The calibration is
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done as described above. The adjustment methods are then
applied to present-day observations and model data, again as
appropriate, to obtain the adjusted return levels for end-21st-
century. These are then validated against the return levels for
end-21st-century derived from pseudo-observations.

The basic validation metric will be the relative error of the
return levels for end-21st-century for a given duration and
return period T , as follows:

RE = |PT −VT |/VT .

Thus, this determines the absolute difference between the
projected return level PT obtained from using an adjustment
and the validation return level VT estimated from pseudo-
observations for end-21st-century divided by the validation
return level. This metric is calculated for every grid point
and for every combination of model or pseudo-observations.
Since we have N = 19 model simulations in the ensemble,
we have N × (N − 1)= 342 different combinations for vali-
dating each adjustment method and can make statistics of the
relative error. This quantifies the average performance of the
different methods.

End-user scenarios are often constructed as the median
or mean from ensembles. We also tested this in the inter-
model cross-validation set-up. The calibration is performed,
as before, on each of the remaining models and adjusted re-
turn levels for end-21st-century are calculated. But then the
median of these adjusted future return levels is calculated,
and this is validated against the future pseudo-observations.
Note that this gives only N = 19 different combinations and,
therefore, less robust statistics compared to the above.

4 Results

4.1 Modelled return levels for conditions in the
present-day and end-21st-century

Figure 2 displays the geographical distribution of the 10-year
return level for precipitation intensity of a 1 h duration, cal-
culated as the median return level over all 19 model simula-
tions. The smallest return levels are mainly found in the arid
North African region and, to some extent, in the Norwegian
Sea, while the largest return levels are found in southern Eu-
rope and in the Atlantic northwest of the Iberian Peninsula.
Mountainous regions, such as the Alps and western Norway,
stand out as having higher return levels than their surround-
ings. This supports the idea that the models are not totally
unrealistic in modelling extreme precipitation.

There is a general increase in the range of 20 %–40 % in
climatic conditions from the present-day to end-21st-century.
The relative changes are geographically quite uniform across
the area. For instance, no evident difference between the land
and sea appears. Moreover, the mountainous regions do not
stand out from their surroundings.

We also show, in Fig. 3, the median 10-year return level
for a 24 h duration. Again, the largest return levels are found
in southern Europe and northwest of the Iberian Peninsula.
Also, the mountainous regions stand out with higher return
levels that are even more pronounced than for a 1 h dura-
tion. The return levels generally increase conditions from the
present-day to end-21st-century by around the same percent-
age as for a 1 h duration, and they are also geographically
homogeneous.

To obtain a more detailed impression of the data, Fig. 4
shows the return levels and their changes from the present-
day to end-21st-century for a grid point in northern Germany
for all 19 model simulations. For a 1 h duration (Fig. 4a), re-
turn values increase from the present-day to end-21st-century
in all cases. For a 24 h duration (Fig. 4b), the return levels
typically increase from the present-day to end-21st-century
but with some exceptions. This behaviour is common to all
regions. For both durations, we also note the large spread in
return levels within the ensemble. The spread is much higher
than the change between the present and future for most mod-
els; in other words, there is a poor signal-to-noise ratio. This
is probably a combined effect of different climate signals in
different models and natural variability (Aalbers et al., 2018).

4.2 Inter-model cross-validation

In the following, we will present results using two differ-
ent types of displays. First, we will use spatial maps of the
median relative error, calculated from all combinations of
model/pseudo-observations. Second, we will, for each ad-
justment method and for each combination of model/pseudo-
observations, calculate the median relative error over each of
the eight PRUDENCE subregions defined in Christensen and
Christensen (2007) and shown in Fig. 1. For each region, we
will illustrate the distribution of the relative error across all
combinations of model/pseudo-observations by showing the
median and the 5th and 95th percentiles of this distribution.

4.2.1 Results for a 1 h duration

Figure 5 shows the median, across all model/pseudo-
observation combinations, the relative error for all five meth-
ods for 1 h duration and the 10-year return period.

First, we look at the reference methods. Relative errors
from the OBS method are in the range of 20 %–40 %. The
lowest values are found in the Mediterranean, western France
and the Atlantic west of the Mediterranean; the highest val-
ues are in the Atlantic west of Ireland and in Scandinavia.
The SCE method has errors in the interval of 25 %–45 %,
with the lowest values in the Atlantic west of Ireland; the
largest values are over parts of the Atlantic and northern
Africa. The two reference methods give rather similar results,
but the OBS method slightly outperforms SCE in the south,
while the opposite is true in the north.
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Figure 2. Geographical distribution of the 10-year return level of precipitation intensity for 1 h duration for the present-day (a) and relative
change from the present-day to end-21st-century (b). In each grid point, values are the median return level over all 19 model simulations.

Figure 3. As in Fig. 2 but for a 24 h duration.

The relative error of FAC is below 20 % in most places.
Everywhere it is smaller than the relative error of the ref-
erence methods OBS and SCE. The DC method has a rela-
tive error comparable to (e.g. western France, western Iberia
and eastern Atlantic) or larger than (in particular, northern

Africa) that of FAC. That said, the concept of relative error
should be used with care in an arid region, such as north-
ern Africa. But, from this result, it is not justifiable to use
the more complicated DC in favour of the simpler FAC. Fi-
nally, the relative error of BC is above both DC and FAC ev-
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Figure 4. Modelled return levels at 50◦ N, 10◦ E (northern Germany; marked with a red cross in Fig. 1) for the present and future for a
10-year return period and 1 and 24 h durations. Different colours represent the 19 different GCM–RCM simulations listed in Table 1.

Figure 5. Geographical distribution of the relative error of the end-21st-century 10-year return level for a 1 h duration precipitation in-
tensity from the inter-model cross-validation. Colours show the median of the relative error calculated over all model/pseudo-observation
combinations. Panels show the different adjustment methods.
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erywhere, indicating the poorest performance of all methods
considered.

The statistical distribution of the relative error is shown
in Fig. 6 for the eight PRUDENCE subregions (see Fig. 1).
We first note that the distribution of relative error is shifted
towards higher values for larger return periods, as expected.
Next, we note that the two reference methods, OBS and SCE,
behave differently. SCE generally has a slightly larger me-
dian relative error, but the 95th percentile is much larger for
SCE than for OBS, in particular for large return periods.
Thus, OBS performs better overall than SCE, meaning that
using present-day pseudo-observations to estimate the pro-
jected return levels for end-21st-century yields a better rela-
tive error than using raw modelled scenario data.

The FAC method generally has the best overall perfor-
mance, both in terms of the median and the 95th percentile
of the relative error. The DC method has a slightly poorer
performance than FAC, both in terms of the median and the
95th percentile of the relative error. Finally, BC has a poorer
performance than DC, when comparing the median of the
relative error and, in particular, the 95th percentile.

In summary, for a 1 h duration, the method with the best
performance is using a climate factor on the return levels
(FAC). This method outperforms both reference methods and
the more sophisticated methods based on quantile mapping,
i.e. DC and BC, with the latter having the poorest overall per-
formance of them all. Note that DC is comparing GPDs from
the same model, whereas BC is comparing GPDs from dif-
ferent models. If the difference, in terms of GPD parameters,
between two models in the present-day climate is typically
larger than the difference between the same model for the cli-
mate in the present-day and end-21st-century, it can explain
the different results.

4.2.2 Results for a 24 h duration

For a 24 h duration (see Fig. 7), OBS has the lowest median
relative error (less than 30 %) in most regions of all the ad-
justment methods, while SCE has higher relative error in the
interval of approximately 30 %–60 %, with the highest val-
ues in North Africa. FAC has relative errors in between those
of OBS and SCE. Of the quantile-mapping methods, DC has
relative errors in the interval of approximately 20 %–80 %,
which is larger than FAC in most places, and finally, BC has,
as for a 1 h duration, the largest median relative errors of all
the methods.

As for the 1 h duration, we also compare the entire statis-
tical distribution of the relative error of the different adjust-
ment methods for all three return periods (Fig. 8), and again,
both the median and 95th percentile of the relative error in-
creases for larger return periods, as expected. Furthermore,
OBS seems, surprisingly, to have a small median relative er-
ror and the smallest 95th percentile of all methods considered
for all subregions. SCE has a median not too different from
that of OBS, but the 95th percentile is much larger. Similar

characteristics hold for FAC. The quantile-mapping methods
DC and BC have slightly larger median values, but the 95th
percentile is smaller than for FAC. All these characteristics
hold for all subregions.

4.2.3 Ensemble median

Inter-model cross-validation of pseudo-observations against
the model ensemble median, as described in Sect. 3.4, was
also carried out. For a 1 h duration, the distribution of the rel-
ative error is shown in Fig. 9. By comparing this with Fig. 6,
the distribution of the relative error does not change much
overall. However, for many of the subregions considered, and
for the longer return periods, FAC and BC have a smaller
95th percentile for cross-validation against model ensemble
means than against individual models.

In addition, the distribution of the relative errors does not
change much for a 24 h duration when shifting to a validation
against the ensemble median (not shown).

4.3 Further analysis on conditions for skill

To obtain further insight into the difference in performance
between hourly and daily precipitation, we consider, for a
given return period, the relationship between the bias factor
for present-dayBP,T = CT

OT
andBF,T = ST

VT
end-21st-century

for all model/pseudo-observation combinations (see Fig. 10).
In this figure, the relationship between bias factors in the

present-day and end-21st-century appears more pronounced
for 1 h duration than for 24 h duration. That said, it must be
borne in mind that if the point (x,y) is in the plot, then so
is the point (1/y,1/x), and this implies an inherent tendency
towards a fan-like spread of points from (0,0), as seen on
both plots.

To quantify the strength of the above relationship, we de-
fine an index as follows:

R =

〈
|BF −BP |

(BF +BP )/2

〉
,

where 〈·〉 means averaging over combinations of
model/pseudo-observations. This index is an extension
of the index introduced by Maurer et al. (2013). It is the
ensemble average of the relative absolute difference between
the present-day and future bias. A value of R = 0 means
that these biases are equal, i.e. perfect stationarity, and
the smaller the value of R, the closer to stationarity (in an
ensemble sense).

Values of R are given in the upper left corner of each panel
of Fig. 10, and they also support the partial relationships de-
scribed above and a stronger one for hourly duration. These
relations are important since they could explain the generally
good performance of the FAC method seen in the previous
section. Suppose that BP,T = BF,T , then, in the following:
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Figure 6. Statistical distribution (median and 5th and 95th percentile) of the relative error of the inter-model cross-validation for a 1 h duration
for 1, 10 and 100-year return periods. Panels represent the PRUDENCE subregions shown in Fig. 1. Each colour represents an adjustment
method (see Table 2).

PT =
ST

CT
OT = ST

OT

CT
= STBP = STBF = ST

VT

ST
= VT ,

and the FAC method will therefore adjust perfectly.
We also note that daily data, due to the summation, would

have less erratic behaviour than hourly data, and therefore,
we would expect any relationship to be less masked by noise
for daily data than for hourly data from purely statistical
grounds. Therefore, any explanation as to why it is opposite
should probably be found in physics or the details of mod-
elling. We will discuss this further in Sect. 5.3.

5 Discussion

5.1 Relation with other studies

The study by Räty et al. (2014) touches upon issues related
to ours. However, our study includes smaller temporal scales
(hourly and daily) and higher return periods (up to 100 years
vs. the 99.9th percentile of daily precipitation corresponding
to a return period of around 3 years). Nevertheless, the two
studies agree in their main conclusion, namely that applying
a bias adjustment seems to offer an additional level of re-
alism to the processed data series, including in the climate
projections, as compared to using unadjusted model results.
The two studies both support the somewhat surprising con-
clusion that using present-day (pseudo-) observations as the

https://doi.org/10.5194/hess-25-273-2021 Hydrol. Earth Syst. Sci., 25, 273–290, 2021



284 T. Schmith et al.: Identifying robust bias adjustment methods for European extreme precipitation

Figure 7. As in Fig. 5 but for a 24 h duration.

scenario gives a skill comparable to that of the bias adjust-
ment methods.

Kallache et al. (2011) proposed a correction method
for extremes, i.e. cumulative distribution function transfer
(CDF-t), and obtained good validation result with the calibra-
tion/validation split of historical data from southern France.
The CDF-t method was applied by Laflamme et al. (2016)
on daily New England data, who concluded that “down-
scaled results are highly dependent on RCM and GCM model
choice”.

5.2 Convection in RCMs

The grid spacing of present state-of-the-art RCMs available
in large ensembles, such as CORDEX, is around 10 km,
and at this resolution, it is necessary to describe convection
through parameterisations. This is obviously an important
deficit for our purpose, since this could represent a system-
atic bias in all our simulations and, therefore, violate our un-
derlying assumptions that the individual model simulations
and the real-world observations behave similarly in a physi-
cal sense. Thus, we do not promote naively applying the pre-

sented adjustment methods to hourly data from these mod-
els. Instead, the present work should be seen as a statisti-
cal exercise, and the methods can, in the future, be applied
to convection-permitting model simulations that better rep-
resent the convective process. The results from the present
work would apply equally to that case.

With the advent of convective-permitting models, a more
realistic modelling of convective precipitation events is
within reach, and a change in the characteristics of such
events is seen (Kendon et al., 2017; Lenderink et al., 2019;
Prein et al., 2015). This next generation of convection-
permitting RCMs with a grid spacing of a few kilometres
allows a much better representation of the diurnal cycle and
convective systems as a whole (Prein et al., 2015). With that
in mind, we foresee redoing the analysis when a suitable en-
semble of convective-permitting RCM simulations becomes
available.

5.3 Stationarity of bias

The success of applying bias adjustment to climate model
simulations is linked to the biases being stationary, i.e.
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Figure 8. As in Fig. 6 but for a 24 h duration.

present and future biases being more or less identical. In
Sect. 4.3, we showed (in Fig. 10) that this was the case for
a 1 h duration and less so for a 24 h duration in our pseudo-
reality setting. Such a relationship is an example of an emer-
gent constraint (Collins et al., 2012). This is a model-based
concept, originally introduced to explain that models which
have too warm (cold) a present-day climate tend to have
a relatively warmer (colder) future climate. The reason for
this is that it is the same underlying physics which gener-
ates the present-day and future temperatures (Christensen
and Boberg, 2012).

We suggest that our observed emergent constraints could
be explained in a similar manner, namely as a result of
the Clausius–Clapeyron relation linking atmospheric tem-
perature changes to changes in its humidity content and,
thereby, precipitation changes. The change prescribed by the
Clausius–Clapeyron equation is usually termed the thermo-

dynamic contribution. In addition to this, there is a dynamic
contribution, and this may explain the differences between
the hourly and daily relation seen in Fig. 10. The rationale is
that hourly extremes are entirely due to convective precipita-
tion events with almost no dynamic contribution (Lenderink
et al., 2019), while daily extremes are a mixture of convec-
tive events and large-scale strong precipitation, of which the
latter has a more significant dynamic contribution (Pfahl et
al., 2017), causing the less marked emergent constraint for
the daily timescale. This interpretation is also supported in
Fig. 4, in which daily precipitation sees some crossovers (fu-
ture return level smaller than the present), whereas hourly
precipitation does not have any crossovers.

5.4 The spatial scale

In the definition of model bias, it is tacitly assumed that the
observational data set has the same spatial resolution as the
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Figure 9. As in Fig. 6 but for the inter-model cross-validation against ensemble medians.

model data. In practice, however, it is rarely possible to sep-
arate the bias from a spatial-scale mismatch. For instance, if
we compare modelled precipitation, which represents aver-
ages over a grid box, with rain gauge data, which represent a
point, there can be a quite substantial mismatch for extreme
events (Eggert et al., 2015; Haylock et al., 2008). Therefore,
if the bias is adjusted towards such point values, it may lead
to further complications (Maraun, 2013).

Sometimes, though, it is desirable to include the scale mis-
match in the bias adjustment. Many impact models, e.g. hy-
drological models, are tuned to perform well with local ob-
servational data as input. This presents an additional chal-
lenge if this impact model is to be driven by climate model
data for climate change studies, since the climate model will
have biases in its climate characteristics (mean, variability,
etc.) compared to those of the observed data. Applying the
adjustment step, the hydrological model can rely on its cal-

ibration to observed conditions (Haerter et al., 2015; Refs-
gaard et al., 2014).

5.5 Adjustment methods not included in the study

Only the basic adjustment methods have been included in
our study. The simple climate factor approach has been ap-
plied in numerous hydrological applications (DeGaetano and
Castellano, 2017; Sunyer et al., 2015 and other sources). We
also wanted to test quantile-mapping approaches, which in
extreme value theory takes the form of a parametric transfer
function. This we have applied in two flavours in the spirit of
Räty et al. (2014). Finally, we wanted to benchmark against
the canonical benchmark methods, namely observations and
raw model output.

There is a myriad of more specialised methods which are
each tailored to account for a particular deficit of the simpler
methods. First, there is the issue of whether it is, for pre-
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Figure 10. Relationship between bias factors in the present-day and
end-21st-century in 10-year return levels for the mid-Europe sub-
region for all model/pseudo-observation combinations. (a) The 1 h
duration and (b) 24 h duration, respectively. Numbers in upper left
corners are the R indices. See text for details.

cipitation, more reasonable to map relative quantile changes
rather than absolute ones (Cannon et al., 2015). It has also
been argued that a bias correction method should preserve
long-term trends, i.e. the climate signal, and only adjust the
shorter timescales, as extensively discussed in Cannon et
al. (2015). Then multivariate methods have been argued for
and applied in order to preserve relationships between vari-
ables (Cannon, 2018) and nested methods to account for dif-
ferent biases for different timescales (Mehrotra et al., 2018).
Also, methods to correct for systematic displacement of vari-
able features in complex terrain have been suggested and ap-
plied (Maraun and Widmann, 2015). Finally, Li et al. (2018)
adjust stratiform and convective precipitation separately in-
stead of adjusting the total precipitation. In this way, any fu-
ture change in the ratio between the two types of precipitation
is accounted for.

It could be interesting to examine the above methods in
future studies, though we acknowledge it would be a quite
extensive work. We can, at present, only guess at the out-
come of such work, but the more refined methods may not
perform too well in the inter-model cross-validation setting.
The reason for this suspicion is that these methods, while be-
ing more elaborate, in most cases also have more parameters
to be estimated, implying a higher risk of overfitting. An ar-
gument in favour of this is that the present study shows that
the more elaborate quantile-mapping methods of DC or BC
do not outperform the simpler FAC method.

6 Conclusions

Based on hourly precipitation data from a 19-member en-
semble of climate simulations, we have investigated the ben-
efit of bias adjusting extreme precipitation return levels on
hourly and daily timescales and evaluated the different meth-
ods. This is done in a pseudo-reality setting, where one model

simulation in turn from the ensemble plays the role of obser-
vations extending into the future. The return levels obtained
from each of the remaining model simulations are then ad-
justed in the present-day period, using different adjustment
methods. Then the same adjustment methods are applied to
the model data for end-21st-century to obtain projected re-
turn levels, which are then compared with the corresponding
pseudo-realistic future return levels.

The main result of this inter-comparison is that, compared
to using the unadjusted model runs, applying bias adjustment
methods improves projected extreme precipitation return lev-
els. Can an overall superior adjustment methodology be ap-
pointed? For an hourly duration, the method to recommend
(with the smallest relative error) is the simple climate factor
approach, FAC, which is better in terms of the relative er-
ror than the more complicated analytical quantile-mapping
methods based on EVA, DC and, in particular, BC. For a
daily duration, the OBS method performs surprisingly well,
with the smallest 95th percentile of the relative error. Fur-
thermore, the quantile-mapping methods perform better than
FAC, with DC having the smallest relative error. These con-
clusions hold regardless of the subregion considered. We also
cross-validated against model ensemble means; this gave, in
general, similar results without significant changes in the dis-
tribution of the relative error.

Finally, we registered emergent constraints between biases
in the present-day and end-21st-century. This was more pro-
nounced for hourly than for daily timescales. This could be
caused by hourly precipitation being more directly linked
to the Clausius–Clapeyron response, but this requires more
clarification in future work.
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