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Abstract: Probabilistic sea level projections are frequently used to characterise the uncertainty in future
sea level rise. Here, it is investigated how different modelling assumptions and process estimates affect
such projections using two process-based models that add up the sea level contributions from different
processes such as thermosteric expansion and ice sheet melt. A method is applied to estimate the direct
contributions from the different processes as well as that of nonlinear interactions between the processes
to the projections. In general, the nonlinear interaction terms are found to be small compared to the
direct contributions from the processes, and only a few interaction terms give significant contributions
to the projections. Apart from the process estimates, probabilistic models often also incorporate some
expert judgements that inflate the uncertainty compared with that derived from climate and ice-sheet
models, and the effects of some such judgements are also evaluated and found to have a considerable
influence on the projections. Lastly, sea level projections are most often given contingent on representative
concentration pathways for atmospheric greenhouse gases. Here, we generalize this approach by also
providing projections for a probabilistic baseline scenario.
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1. Introduction

Sea level rise is an ongoing and accelerating process that already affects many coastal communities
around the world [1]. Projecting how the sea level might change in the future is thus an important
undertaking, and regularly updated projections are offered by among others the Intergovernmental Panel
on Climate Change (IPCC). Such projections are most often contingent on representative concentration
pathways (RCPs), where the concentrations of atmospheric greenhouse gases are prescribed. Recently,
however, some authors have focused not only on RCP based projections, but also on more loosely based
sea level scenarios representing other paths, unconstrained by emissions or concentrations, see [2] for
an example.

Apart from having different backstories (i.e., RCP or something else) sea level projections also differ
in whether they are fully probabilistic [3,4], or just contain a range, like the likely range used by the
IPCC [1,5]. Other differences between projections owe to the methodologies used like semi-empirical
models [6], expert judgements [7] and process-based models [1]. Our focus here is on process-based
models, which is the model type used to produce the IPCC’s projections. Process-based models are used
to sum up contributions to sea level rise from different processes. The main ones acting on the global
mean sea level (GMSL) are: Antarctic mass loss, Greenland mass loss, glacial mass loss, thermosteric
expansion and changes in terrestrial water storage. If one looks at sea level regionally, then ocean
dynamics, glacial isostatic adjustments and several other processes may also give important contributions.
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Process-based models give probabilistic projections using Monte Carlo methods to combine estimates of
different processes. Different distributions, typically based on modelling results, are used to emulate the
different processes, and different strengths of the correlations between different processes are also chosen
guided by results primarily from climate models.

Sea level projections for the year 2100, which is our main concern here, diverge widely and these
projections are therefore sometimes said to be “deeply” uncertain [8]. The primary reason for this is
arguably that these projections are not currently testable. Noble Laureate Richard Feynman famously
wrote “The principle of science, the definition, almost, is the following: The test of all knowledge is
experiment. Experiment is the sole judge of scientific ‘truth’.” [9]. The experiment of concern here
is ongoing, so the skill in sea level projections for the end of the 21st century is currently not testable.
More precisely, they are not testable to a degree where we can exclude many projections. Following this line
of reasoning, sea level projections are essentially opinions. The problem with opinions, of course, is that
everyone has one and over 70 sea level projections have consequently been published [10]. Apart from
the testability problem, there are at least two more reasons that strongly suggest that deep uncertainty
in sea level projection will persist long into the future. Firstly, sea level science borrows methods from
many different scientific disciplines, which gives rise to many diverging projections. Secondly, there are
no known useful physical bounds one can put on 21st century sea level rise (e.g., knowing that melting the
entire cryosphere would raise the sea level by about 65 m is hardly useful).

Dealing with the multitude of projections available can be challenging. Some authors have therefore
chosen to combine information from different projections into a single one [11], while others stress the
importance of using many projections to capture these diverging opinions [12,13]. The aim of this article is
to implement some methodologies that allow us to unravel how differences in modelling assumptions
and process estimates affect sea level projections, something which is not always immediately evident
from simple comparisons of different projections. Our focus is thus not on how to best work with sea
level projections. Rather, it is on how to understand them and interpret differences between them. In our
analysis, we look at nonlinear interactions between different process estimates, the effects of some expert
judgements on projections and scenario uncertainty.

Because of nonlinear interactions, one cannot simply estimate what would happen to, for example,
the 95th percentile of a given sea level projection if its estimate of the Antarctic contribution was substituted
by another. In here, we will directly quantify this effect using a technique introduced in [14]. Apart from
its direct practicality for fact checking back-of-the-envelope calculations such as the aforementioned
Antarctic substitution, these nonlinear interaction terms also give insights into the physics and the model
assumptions that govern the uncertainty. A considerable part of the uncertainty in probabilistic models
is also owing to expert judgements of different kinds. One such judgement is what sort of data that go
into the different process estimates, another is a remapping of percentiles that is used by the IPCC to
define their likely range. The likely range is defined as the 17th–83rd percentile range of the IPCC’s sea
level projection. However, it is calculated as the 5th–95th percentile range in their process-based model.
It is not clear how such a judgement could be applied to other percentiles, but the consequences of using
some transformations aiming to do a similar job are investigated here.

Lastly, we attempt to look into scenario uncertainty by going beyond the RCP based projections
using a probabilistic baseline scenario. That is, a scenario that depicts a future state of society in which no
new environmental policies are implemented apart from those already in the pipeline today. In this case,
the scenario is constrained by fossil fuel availability and estimates of climate sensitivity [15]. This approach
aims to cast the probabilities of seeing a certain sea level rise in a less restrictive framework than that of the
RCPs. The likely ranges for the different RCPs, in particular that from the high emission RCP8.5 scenario,
is often used for planning purposes. However, the probabilities of the different RCPs coming to pass
are not known. The probability of seeing a sea level rise equal to the upper likely range of, for example,
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RCP8.5, is thus essentially unknown. Strictly speaking, using a probabilistic baseline scenario will not
remove the ambiguities inherent to putting probabilities on future climate states. However, it certainly
helps contextualizing the probabilistic RCP based projections.

The overarching aim of this article is to probe how different estimates and viewpoints affect sea level
projections for the year 2100. No new projections will be presented. Instead, a couple of different models
are investigated to give insights into how different process estimates, expert judgements and scenario
choices affect the sea level projections at different percentiles.

2. Method

Our process based probabilistic projections are done using a code written by Dewi le Bars availiable
at https://github.com/dlebars/PSLP), which was used in [16,17], where the model is presented in much
greater detail than here. Essentially, the model produces probability density functions (PDFs) of sea level
rise for the years up to 2100 using Monte Carlo methods. These yearly sea level projections are given by a
sum of random variables modelling the different sea level rise components according to

X(t) = XTW(t) + XA(t) + XG(t) + XO(t) + XGl(t), (1)

where X(t) is the sea level projection at a given time t, XTW is the contribution from changes in terrestrial
water storage, XA is the Antarctic contribution, XG is the Greenland contribution, XO is the oceanic
(thermosteric) contribution and XGl is the contribution from Glaciers that are not part of the Greenland or
Antarctic ice sheets. The contributions from the ice sheets can be further subdivided into components from
surface mass balance and ice sheet dynamics. This sort of modelling approach is needed since no single
climate model gives estimates of all the components in Equation (1), and even if such a model could be
made the computational cost of running it would prohibit its usage for deriving sea level PDFs.

Several different options are available in the code to model the the different sea level components in
Equation (1). One option is to model the components as in the probabilistic projection that was used to infer
the likely range in IPCC’s fifth assessment report (AR5, [5]). This procedure gives a PDF, which agrees with
the published AR5 percentiles to within a few cm. Two different sets of sea level components (i.e., sets of
terms in Equation (1)), both covered in [17], are used here. The first is the AR5 version, which we modify
slightly as described later in the section so that it can emulate the sea level projection presented in IPCC’s
Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC). The second is the one
called the probabilistic partially correlated model in [17]. These models are hereafter refereed to as the
SROCC and the LB18 model. Many components in both these models are driven by the global mean
surface temperature (GMST), which is modelled as

T(t) = T(t) + γσ(T(t))N1, (2)

where T(t) is the GMST at time t, T(t) is a temperature distribution derived from the Coupled Model
Intercomparison Project Phase 5 (CMIP5), the bar signifies an ensemble mean, σ(T(t)) is the standard
deviation of that distribution, N1 is a normally distributed random variable with zero mean and standard
deviation equal to one, and γ is a parameter that can be used to manipulate the temperature uncertainty
derived from the CMIP5 ensemble. This parameter is set to 1 in the AR5 model and 1.64 in the LB18 model.
A γ value larger than one makes the temperature uncertainty larger than that derived from the CMIP5
ensemble, which in turn increases the uncertainty in the sea level projection. The γ value used in the
LB18 model is meant to make a judgement similar to that the IPCC makes when they define their likely
range (in this case, their 17th–83rd percentile range) to be equal to the 5th–95th percentile range of their
process-based model [17].

https://github.com/dlebars/PSLP
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Several of the sea level rise contributions, defined in Equation (1), then depend on this GMST
distribution in their parametrization. XO(t), for example, is given by

XO(t) = XO(t) + γσ(XO(t))NO, (3)

where XO is a distribution of the oceanic (thermosteric) contribution to sea level rise derived from a CMIP5
ensemble and NO is a random variable. The LB18 and AR5/SROCC models differ in that NO = N1 in
the AR5 and SROCC models and NO = 0.3N1 + N1

√
1− 0.32 in the LB18 model. This means that XO(t)

and T(t) are perfectly correlated in the AR5 and SROCC models, while they have a Pearson correlation
coefficient of 0.3 in the LB18 model. The latter value was chosen because it better represents the correlation
between these two variables in the CMIP5 ensemble.

Two additions were made to the code in the process of doing this work. The first allows the emulation
of the probabilistic projection used to infer the likely range in SROCC. This is done by substituting the
Antarctic sea level contribution used in the AR5 projection (i.e., XA(t) in Equation (1)), for one that agrees
closely with that used in SROCC at the 5th, 50th and 95th percentiles for the years between 2007 and 2100.
The other components of the AR5 and SROCC projections are the same, so they remain unchanged.
The second addition permits the different components of the sea level projection to be turned off one at the
time, which allows us to quantify the nonlinear interaction terms between the different processes.

Figure 1 shows how well our emulated SROCC projection compares to the real SROCC projection at
the percentiles published as extended data from the SROCC report. The difference in the full projection
never exceeds 3 cm at any percentile or time, and the difference in the Antarctic contribution is always less
than 0.5 cm. There is a tendency for our probabilistic projection to be biased low by about 1.5 cm, most of
which can be explained by a similar bias in the probabilistic AR5 projection the code produces. This could
easily be adjusted for by a translation of the whole projection. Not being aware of the root cause for this
bias, I have, however, opted to keep the projection as it is.
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Figure 1. The difference between the real SROCC projections and our probabilistic emulation at the
published percentiles as a function of time. The left panels show the full projection and the right panels
show the Antarctic contribution. The top panels show RCP8.5, the middle panels RCP4.5 and the lower
panels RCP2.6.
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Our emulation of the SROCC Antarctic contribution is done by drawing random numbers from a
skewnormal distribution with time varying location and scale parameters. That is, in this case, we set
XA(t) in Equation (1) according to

XA(t) = Sk(ξ(t), ω(t), α), (4)

where Sk is the skewnormal distribution, ξ is the location parameter, ω is the scale parameter, and α is
the time constant, but RCP dependent shape parameter. These three parameters are chosen to minimise
the difference between the 5th, 50th and 95th percentiles of the XA(t) distribution and those given for the
Antarctic sea level contribution in SROCC, see Figure 1. The skewnormal random numbers drawn to form
the Antarctic contribution are independent of all other random numbers drawn to form the distributions
of the other components, an assumption that is also used in the real SROCC model [1].

Process-based projections like these ones combine the estimates from different sea level rise processes
in a nonlinear way. This means, for example, that the 95th percentile sea level rise estimate is in
general not equal to the sum of 95th percentile contributions from the individual sea level rise processes
(i.e., from terrestrial water, glaciers, Greenland, Antarctica and thermosteric expansion). Formally,
one can quantify the nonlinear interactions between the different components by performing a number of
simulations where the number of processes used is varied. Here, we use the method introduced in [14] to
quantify the direct contributions and nonlinear interaction terms of the system. An example of applying
this methodology in a sea level study is given in [18]. The method allows us to factorize the different
processes so that the whole projection is equal to the sum of these factors. A simple system consisting of
only two processes (a and b) can be factorized as

ηab = η̂0 + η̂a + η̂b + η̂ab, (5)

where ηab is our sea level projection for a given percentile given by the model when both processes a
and b and included, η̂0 is the value η would have if both processes a and b are excluded, η̂a is the direct
contribution from process a, η̂b is the direct contribution from process b, and η̂ab is the contribution from
the interaction between process a and b. A general rule is that a hat variable with only one subscript
shows the direct effect of a given process on the projection, while a hat variable with multiple subscripts
shows the contribution to the projection from nonlinear interactions between these processes. Variables
without hats refer to direct model output rather than factors. The hat variables in our simple example can
be calculated from the model output according to

η̂0 = η0, (6)

η̂a = ηa − η0, (7)

η̂b = ηb − η0, (8)

η̂ab = ηab − (ηa + ηb) + η0. (9)

The interested reader is directed to [14] for details on how these different terms are computed in
the general case with n processes. The system grows in complexity as more processes are added, and a
system with n processes requires 2n simulations for a full factorisation. For our SROCC projection, we will
consider four processes η̂G for the Greenland contribution, η̂A for the Antarctic contribution, η̂O for
the oceanic contribution (i.e., the thermosteric contribution) and η̂Gl for the contribution from Glaciers.
The contribution from changes in terrestrial water storage will thus be contained in the η̂0 term.

The factorisation is applied to the SROCC and to the LB18 model. Both models contain the same
physical processes, although estimated differently. However, the LB18 model also has an additional
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expert judgement tweak which we shall consider as a separate process here. Many of the processes in the
process-based models are driven by the global mean surface temperature (GMST), and the distribution of
GMST in the LB18 model is multiplied by a factor γ = 1.64 as discussed above. This “process” is here
called η̂T , and it is only included in the factorisation of the LB18 model. The SROCC model can be tweaked
in a similar way and two such models, in particular one dubbed the SROCC γANT, are discussed in the
article. For the factorisation experiment, we have, however, opted to keep the SROCC model as is, since it
is unclear how and if the IPCC’s judgement of mapping the 5th–95th percentile range to the likely range
should be applied to other percentiles.

It is worth noting that interaction terms in this framework typically stem from the partially correlated
nature of the random variables involved. In fact, η̂ab approaches zero for normally distributed Xa and
Xb (the random variables modelling ηa and ηb) when the correlation between Xa and Xb approaches one.
A simple example is when Xa and Xb are both given by random variables with zero means, and η0 = 0.
Evaluating η̂ab at some percentile, p, we get from Equation (9)

η̂ab = zab(p)
√

σ(Xa)2 + σ(Xb)2 + 2σ(Xa)σ(Xb)r(Xa, Xb)− za(p)σ(Xa)− zb(p)σ(Xb), (10)

where zab(p),za(p) and zb(p) are z-scores for the percentile p for the different distributions governing
Xa, Xb and Xab, and r(Xa, Xb) is the Pearson correlation coefficient between Xa and Xb. It is plain to see
that, if Xa and Xb are both independent normally distributed variables, then zab(p) = za(p) = zb(p),
and η̂ab ≤ 0 by the triangle inequality. If we assume that zab(p) ≈ za(p) ≈ zb(p), it is also clear that
η̂ab becomes increasingly negative with a diminishing correlation coefficient. It is thus quite hard to get
strong positive interactions in this framework, which requires having both strongly correlated variables
and favourable z(p) values. A special case is the η̂T “process”, which affects the distributions of other
variables, while the variance of η̂T itself is zero. Interaction terms of the form η̂TX are thus positive when
the γ multiplication amplifies the process X.

A rough characterization of these models is that the SROCC model is a rather straightforward
frequentist approach to uncertainty, typical of what is normally used in physical sciences. Basically,
it shows the frequency of sea level outcomes that could be expected from current state-of-the-art models.
The LB18 model is close to the SROCC model for most processes, but it has a different correlation structure,
a very long Antarctic tail, and a GMST uncertainty that is inflated by expert judgements. The SROCC
γANT is a version of the SROCC model where both GMST and Antarctic uncertainty is inflated by expert
judgements. Compared to the LB18 model, the SROCC γANT has a fatter but not quite as long Antarctic
tail. Together, the three models give a range that covers outcomes that one could reasonably expect to see in
current physical models, but the estimates are smaller than what is found when the ice sheet contributions
are given directly by expert judgements [7].

3. Results

3.1. Factorization of the Projections

In this section, we use the factorisation [14] to investigate how different processes contribute to the
different percentiles of the LB18 and SROCC projections. Hereafter, all projections shown are for the
year 2100. Figures 2–4 show the results for the different RCP projections. The two models are seen to have
the same direct contributions from the main processes with the exception of η̂A, which comes from [19]
in the LB18 model, and is much larger at the high percentiles than the SROCC estimate. The interaction
terms are more different between the two projections than the direct contributions, at least under RCP8.5.
For RCP4.5 and RCP2.6, all interaction terms are quite weak. The most prominent negative interaction term
is η̂GA. The rational is simple, if following from Equation (10) that the magnitude of negative interaction
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terms increase with decreasing correlation between, and increasing magnitude of, the individual process
terms. Both η̂G and η̂A are large terms at high percentiles, and they are also weakly correlated, in fact,
uncorrelated in the SROCC model. The two terms η̂AO and η̂AGl are also sizeable for the same reason.
Generally speaking, all sea level components are either positively correlated or uncorrelated to each other.
The only significant exception is the Antarctic surface mass balance which is typically anti-correlated to
the other components [17]. This correlation structure is a result of many components being dependent on
the GMST in their parametrisation. Here, we consider the Antarctic dynamic and surface mass balance
components jointly. The correlation of our Antarctic contribution to the others, especially at high percentiles
under RCP8.5, therefore becomes dominated by the dynamic contribution and is thus weakly positive and
zero in the LB18 and SROCC projection, respectively.

Two strong positive interactions exist for the LB18 model: η̂GT adding 8 cm to the 99th percentile and
η̂OT , which adds 5 cm to the 99th percentile. These two terms show the effect that the multiplication of the
GMST distribution by 1.64 has on the Greenland and thermosteric terms, respectively. The magnitude of
this response depends on how well correlated these terms are with GMST and of course on the magnitude
of γ. The more weakly correlated Antarctic contribution gives rise to η̂AT , which contributes only 2 cm to
the projection at the 99th percentile. The SROCC model assumes a perfect correlation between GMST and
the thermosteric term, while LB18 assumes a more realistic correlation coefficient of 0.3. The factor η̂OT
would thus be larger if included into the SROCC model than it is in the LB18 model, given that the γ value
was the same in the two models.

percentile
0 10 20 30 40 50 60 70 80 90 100

se
a
le
ve
l
ri
se

[c
m
]

-10

0

10

20

30

40

50
LB18 RCP8.5 2100

η̂0

η̂G

η̂A

η̂O

η̂Gl

η̂T

η̂GA

η̂GO

η̂GGl

η̂AO

η̂AGl

η̂OGl

η̂GT

η̂AT

η̂OT

η̂GlT

η̂GAO

η̂GAGl

η̂GOGl

η̂AOGl

η̂GAT

η̂GOT

η̂GGlT

η̂AOT

η̂AGlT

η̂OGlT

η̂GAOGl

η̂GAOT

η̂GAGlT

η̂GOGlT

η̂AOGlT

η̂GAOGlT

0 10 20 30 40 50 60 70 80 90 100

se
a
le
ve
l
ri
se

[c
m
]

-10

0

10

20

30

40

50
SROCC RCP8.5 2100

Figure 2. Factorisation of the RCP8.5 projections from the SROCC and LB18 models. Percentiles between 1
and 99 are shown. Note also that the SROCC factorisation has 16 terms, while the LB18 factorisation has
32 terms owing to the inclusion of the γ constant multiplying GMST. A hat variable with one subscript
shows the direct effect of one process, while a hat variable with multiple subscripts show the effect of the
interaction between these processes. The subscript 0 stands for terrestrial water change, G for Greenland,
A for Antarctica, O for ocean and Gl for glaciers.
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Figure 3. Same as Figure 2, but for RCP4.5.
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Figure 4. Same as Figure 2, but for RCP2.6.
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Having an Antarctic contribution that is uncorrelated to GMST as is the case in the SROCC model
might seem like an odd modelling assumption given that Antarctic mass loss is primarily driven by global
warming just like the other components, with the exception of the terrestrial water storage. However,
the assumption should not be interpreted as the Antarctic contribution and GMST being independent.
The scale and location parameters of both the GMST and the Antarctic distributions used in the projections
are functions of time. Without much restriction, we can assume them to be strictly monotonic and
continuous functions defined on a bounded domain, implying that they are bijective. The location
parameter for GMST, µGMST , is thus a function of that for the Antarctic distribution according to

µGMST = f−1(µA) (11)

where f−1 is the inverse of the function µA = f (t), and similar relationships hold between the other
parameters. In other words, one might think of this dependency as assuming that the mean and spread of
the Antarctic contribution is completely governed by GMST, while individual outcomes for the Antarctic
contribution are assumed independent of individual outcomes for GMST. The uncertainty in individual
outcomes in the SROCC model is thus thought to depend on other uncertainties such as in process
understanding or in model numerics.

Overall, the interaction terms, except those owing to the γ multiplication are mostly negative and
sizeable only for weakly correlated processes of large magnitude, in accordance with the simple example
given in Equation (10). Moreover, we find all high order interaction terms to be unimportant, and only a
few low order interaction terms to be of importance for the overall projections. In fact, with the possible
exception of RCP8.5, we find that all interaction terms can be quite safely neglected, which means that
these complicated 16 and 32 term decompositions can be well approximated by far fewer terms.

Figure 5 shows the sum of the interaction and process terms for the two models. The sum of the forcing
terms give quite a good estimate of the total projection with a maximum mismatch of about 10 cm for the
SROCC model on the 99th percentile under RCP8.5. This difference is considerably smaller than the inter
model difference and completely dwarfed compared to the difference between our two model projections
and very high-end model projections such as [16] and [7]. One may therefore produce rough, but useful,
estimates of how these model projections would change if one estimate of a process was substituted for
another by directly adding up the process terms. Now, we should keep in mind that the terrestrial water
term is not included as a separate process here, rather it is contained in η̂0. Since it is uncorrelated to the
other terms it would give rise to a negative interaction term analogous to, but weaker than, η̂GA if it had
been treated as a separate process. This means that substituting, for example, η̂A calculated here for some
other probabilistic measure of the Antarctic contribution, which is calculated without the terrestrial water
component would lead to a slightly bigger overestimation of the total projection than the direct sum of the
processes in Figure 5 does.
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Figure 5. Comparison of the sum of the interaction and forcing terms to the total projections shown in
Figures 2–4.

3.2. The Influence of the Likely Range Transformation

In the preceding section, it was shown that the γ multiplication in the LB18 model gives rise to
some important positive interaction terms that nearly cancel the sum of the negative interactions in that
model. Here, we evaluate the effect of varying γ on the projections. Figures 6–8 show projections for
the different RCPs, where γ is varied between 0.6 and 1.9. This is equivalent to mapping the 5th–95th
GMST percentile range to between 61% and 99% of the probability, for a normally distributed GMST
such as the one used in both models investigated here. The IPCC likely range as a reminder is defined as
covering between 66% and 100% of the probability. An extra alternative is added for the SROCC model
called γANT, where not only GMST but also the Antarctic contribution to sea level rise is multiplied
by γ. This γANT modification is necessary to achieve a transformation close to what the IPCC expert
judgement does. Such a transformation is achieved when γ is between 1.8 and 1.9, which gives 17th and
83th percentiles within a cm or two of those given in SROCC for all RCPs. This transformation also makes
the SROCC model considerably closer to the LB18 model.

The γANT model highlights how much uncertainty expert judgements add to sea level projections,
and indeed how subjective these uncertainty estimates really are. The 99th percentile of the γANT model
with γ = 1.9 is 33 cm higher than when γ = 1.0 under RCP8.5. At the 99.9th percentile, the difference is
49 cm. These differences are larger than the whole Antarctic contribution at the same percentiles under
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RCP8.5 for the SROCC model shown in Figure 2. Another consequence of this transformation is that it
makes the γANT model very fat tailed. The LB18 model still gives a higher estimate than the γANT model
at the 99th percentile by 2 cm, but, for percentiles lower than that, the γANT model gives higher estimates.
The expected cost of flood damage would thus likely be higher for the γANT model than for the LB18
model in most cases, given that sea level rise estimates from the γANT model are higher at all but the
very highest percentiles. The implications of such differences in the shapes of sea level distributions are
not discussed nearly as much in the literature as the values the distributions take at high percentiles are.
However, we will see in the following section that, when scenario uncertainty is also considered as part of
the projections, differences in shape can make a sizeable impact on the estimated probabilities.
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Figure 6. The sea level projections for RCP8.5 as a function of γ in the two models. In the middle panel,
we introduced the γANT parametrisation, where not only the GMST distribution but also the Antarctic
distribution is multiplied by γ. The x-axis is stretched for percentiles smaller than 20 and larger than 80.
At those percentiles, the distance plotted between consecutive percentiles is twice that used in the range
between the 20th and 80th percentile.
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Figure 7. Same as Figure 5, but for RCP4.5.
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3.3. Probabilities for a Baseline Scenario

Thus far, we have focused only on the the likelihood of seeing a certain sea level rise under a given
RCP. This means, of course, that the likelihood of us experiencing a sea level rise equal to, for example,
the 99 percentile under RCP8.5 is not 1%, but rather much less than that. However, the likelihood of
the RCPs themselves coming to pass has not been getting much attention in the scientific literature.
The recently published study [15] (hereafter CP16) is an exception to that rule that we will base our
analysis here on. The authors of CP16 present cumulative probability distributions (CDFs) of global
mean surface temperature (GMST) increase and radiative forcing for the year 2100 that are constrained by
estimates of fossil fuel resource availability and climate sensitivity. This is thus essentially a probabilistic
baseline scenario. RCP8.5 and RCP6.0 in comparison have been interpreted as 90th percentile and medium
baseline scenarios, respectively [20]. CP16’s findings are quite consistent with these estimates giving an
88% probability of surpassing a 2 ◦C increase in GMST, while the probability of exceeding the radiative
forcing of RCP8.5 is found to be 12%. On the other hand, [21] have criticized the CP16 estimate for using
too large estimates of recoverable coal reserves, and thus to give too high probabilities for high emission
scenarios, especially for RCP8.5. Regardless of whether this is true, the constraints imposed by CP16 on
GMST are tight enough to potentially be useful also to constrain future sea level rise.

To link the CDF for GMST increase by CP16 to global mean sea level (GMSL) rise, one needs a
functional relationship between the two parameters. A linear relationship between GMST and GMSL has
been found to hold on time scales of millennia [22,23]; however, for end of the current century projections,
it is not evident what to use. Figure 9 (top) shows the GMSL projections (median and likely range) for RCPs
2.6, 4.5 and 8.5 relative to 1986–2005 from [1] plotted against the corresponding projected GMST increase
relative to preindustrial from [24]. RCP6.0 is absent here because it was not considered by [1]. However,
the GMSL projection for RCP6.0 given by [5] was very similar to their RCP4.5 projection, so, as a zero
order estimate, one might assume that RCP6.0 has roughly the same projection as RCP4.5. The relationship
between sea level rise and temperature appears to be close to linear in these projections, a second order
polynomial fit is also shown for reference, and to include as a more tail-heavy estimate. It is, however,
important to note that this is a plot of GMSL quantiles versus GMST quantiles, and the relationship would
not necessarily be the same if we could plot instead modelled GMSL rise versus modelled GMST increase
directly. The latter is, however, hard to do since no single model that estimates all the terms of the sea level
budget is available. To get a sense of the uncertainties involved in this approximation, we also present a
complementary set of estimates that do not rely on a GMST-GMSL relationship, but that instead make
assumptions about the likelihood of the RCPs.

To produce our second set of estimates, we first assume probabilities for the three RCPs. Two cases are
studied; in the first, we assume that all RCPs are equally likely to occur (giving probabilities 0.33–0.33–0.33),
in the second, we assume that RCP2.6 and RCP8.5 are less likely to occur than RCP4.5. Here, we assume
the probabilities 0.12, 0.76 and 0.12 for RCP2.6, RCP4.5 and RCP8.5, which is roughly similar to CP16.
Probabilistic projections for these different choices are then produced by inverse transform sampling
random numbers from the different sea level projection models discussed in earlier sections in quantities
according to the assumed RCP probabilities. Each such projection shown in Figure 9 (bottom) is done
using PDFs derived from a total of 2× 107 inverse transform sampled random numbers from the three
RCP based distributions of each model.
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Figure 9. Sea level rise plotted against GMST increase from the SROCC report (top), and sea level rise
projections based on the probabilistic baseline scenario (bottom). The SROCC γANT model is used here
with γ = 1.85, which gives a close agreement with the SROCC median value and likely range.

The figure shows that both the linear and quadratic CP16 based cases give much higher sea level
rise than the other cases. The median GMSL rise in the reference case is 72 cm, while it is 54–57 cm in
all cases where probabilities for the RCPs are assumed. The reason for this sizeable difference is that the
CP16 GMST distribution represents a higher climate sensitivity than our other set of estimates. This can
be seen by comparing CP16s CDFs for radiative forcing and GMST. A radiative forcing of 8.5 W/m2

corresponding to RCP8.5 is their 88th percentile, while the 88th percentile for GMST is 5.21 ◦C. However,
the median warming in RCP8.5 relative to the preindustrial given in [24] is only 4.31 ◦C, which is a 74th
percentile in CP16. A difference of 0.9 ◦C like that seen between the 88th percentile value and the RCP8.5
median warming translates to a 15.6 cm sea level rise, using the linear scaling shown in Figure 9. Thus,
the climate sensitivity in CP16 is somewhat higher than that in the CMIP5 models and this gives rise to a
sizeable difference in the projections. A higher climate sensitivity could perhaps be beneficial, however,
since the next generation CMIP6 models have been found to have a higher climate sensitivity than those in
CMIP5 [25].

It is interesting to note that for projections like these the scenario uncertainty (i.e., the difference
between the 0.33–0.33–0.33 and the 0.12–0.76–0.12 cases) is often much larger than the model uncertainty
(i.e., the difference between e.g., the LB18 and the SROCC γANT model). The SROCC γANT model,
for example, is extremely close to the LB18 model in the 0.12–0.76–0.12 case. Moreover, the very long
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Antarctic tails common to all RCP projections with the LB18 model give very small contributions to the
projections here. In fact, the SROCC γANT model consistently gives higher estimates in the 0.33–0.33–0.33
case than the LB18 model, suggesting that the thickness of the tail is more important than its length in
these projections. In fact, in the 0.33–0.33–0.33 case, we have to go all the way up to the 99.8th percentile
to get an LB18 estimate that exceeds that from the SROCC γANT model. Moreover, even for the more
conservative 0.33–0.33–0.33 case, the risk of seeing a global mean sea level rise of 2 m is only about one in
ten thousand for the SROCC γANT and LB18 models, while it is about one in ten million for the SROCC
model. The corresponding probabilities for the CP16 based estimates cannot be determined since the
discreet GMST CDF only go up to the 99.9th percentile, which gives a sea level rise of 160 cm and 172 cm,
respectively, for the linear and quadratic case.

4. Discussion and Conclusions

The factorisation of these projections shows that nonlinear interaction terms give relatively modest
contributions, compared to those from the direct effects of the different processes. In the bulk, this is
especially true for the LB18 model, where there is a significant cancellation between the positive interactions
owing to the γ = 1.64 multiplication, and the negative interactions owing primarily to η̂GA, η̂AO and
η̂AGl . The fact that a few two-process interaction terms are the only ones that make sizeable contributions
to the projection makes the somewhat complicated 16 and 32 term factorisations easy to approximate
with much fewer terms. In fact, a relatively good back-of-the-envelope calculation of the sea level rise
projections for the 1st to 99th percentile for both models considered can be made by simply adding the
direct contributions from the processes. Moreover, if needed, one can accurately approximate the most
important two-process interactions using Equation (10), assuming that correlations between the processes
are known.

It is sometimes argued that risk averse coastal planners need to look outside of the IPCC’s likely
range projections for the different RCPs when planning for future sea level rise [1,12]. To what degree
this is the case is obviously dependent upon how likely one estimates the different RCP scenarios to be.
Currently, there are very few estimates available of the probability of the different scenarios coming to
pass, and those that exist are, to the authors knowledge, only for baseline scenarios. That is, none of these
estimates factor in polices for reducing emissions apart from those already implemented. This deeply
uncertain nature of future emission pathways is, of course, a great hindrance for accurate future sea level
projections. The sensitivity of sea level projections to different assumed scenario probabilities can, however,
be estimated. Our such estimates show clearly that the risk of having a 2 m sea level rise this century,
which the SROCC report mentions as a level that cannot be completely ruled out, becomes extremely small
unless a relatively high probability for RCP8.5 is assumed. Moreover, our analysis also suggests that the
thickness of the right tail of the sea level projection can be much more important than its length when
scenario uncertainty is taken into account.

The biggest uncertainty in sea level projections is often said to come from the Antarctic
contribution [1,3,26], which is arguably true if one directly compares the spread in published estimates for
the different processes under a given RCP. On the other hand, it is evident that uncertainty ranges derived
from current state-of-the-art ice-sheet model ensembles are considerably tighter than those from expert
judgement approaches [1,7,27]. Moreover, expert judgements that currently give the largest uncertainties
have typically only been used to estimate the contributions from ice-sheets. It thus seems premature to
rule out that such methodologies would not also put larger uncertainties on other components. Therefore,
it might be equally true to say that the biggest uncertainty in sea level projections is owing to subjective
choices of methodology. Our sensitivity study to variations in the γ parameter showed, for example,
that the γ range probed for the γANT model under RCP8.5 at the 95th percentile gives rise to a projection
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range that is larger than the whole Antarctic 95th percentile contribution. Moreover, when we considered
the probabilistic baseline scenario, we identified climate sensitivity rather than Antarctica as the biggest
uncertainty. Where the biggest uncertainties lie is thus to some extent dependent on one’s viewpoint.

In conclusion, it is evident that the uncertainty represented in current sea level projections, even if
the RCP is taken as given, is not simply related to how well we understand and can model the physical
processes involved in sea level rise. Much further research, perhaps especially on the dynamics of ice
sheets and their inclusion into climate models, is certainly needed to further constrain uncertainties.
However, as long as the projections are not testable, there will always be room for doubt, and the objective
probabilities that can be calculated from models can thus disagree with the subjective probabilities
perceived by various experts. Carefully probing the effects of different methodological choices, process
estimates and expert judgements as we have done here cannot resolve this difficulty. However, it can inform
us about which such choices and judgements most strongly affect the projections and why. Such knowledge
can in turn be useful for guiding future research.
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