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Abstract
The effect of model calibration on the projection of climate change impact on hydrolog-
ical indicators was assessed by employing variants of a pan-European hydrological model
driven by forcing data from an ensemble of climate models. The hydrological model was
calibrated using three approaches: calibration at the outlets of major river basins, region-
alization through calibration of smaller scale catchments with unique catchment charac-
teristics, and building a model ensemble by sampling model parameters from the
regionalized model. The large-scale patterns of the change signals projected by all model
variants were found to be similar for the different indicators. Catchment scale differences
were observed between the projections of the model calibrated for the major river basins
and the other two model variants. The distributions of the median change signals
projected by the ensemble model were found to be similar to the distributions of the
change signals projected by the regionalized model for all hydrological indicators. The
study highlights that the spatial detail to which model calibration is performed can highly
influence the catchment scale detail in the projection of climate change impact on
hydrological indicators, with an absolute difference in the projections of the locally
calibrated model and the model calibrated for the major river basins ranging between 0
and 55% for mean annual discharge, while it has little effect on the large-scale pattern of
the projection.
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1 Introduction

In the recent past, a large number of hydrological studies have focused on assessing the impact
of climate change on hydrological variables that are considered crucial for different water
sectors (e.g., Arheimer et al. 2017; Forzieri et al. 2014; Pechlivanidis et al. 2017). This has
typically been done by employing hydrological models that operate at a global or continental
scale (e.g., Dankers et al. 2014; Donnelly et al. 2017; Hagemann et al. 2013; Prudhomme et al.
2014), large river systems (Arheimer and Lindström 2015; Krysanova et al. 2017), or
catchment scales (Vormoor et al. 2015; Pechlivanidis et al. 2018). Despite their convenience
of application at very large scales, continental or global scale models are often coarse in their
spatial resolution and may not represent local details of the hydrological system adequately
(Dankers et al. 2014). Regional hydrological models with higher resolution, on the contrary,
may offer an attractive alternative to accounting for local details in the processes relevant to the
study at hand (Olsson et al. 2016). However, this can only be achieved if the model is
parametrized through appropriate parameter estimation schemes.

Regional hydrological models employed for climate impact studies are often calibrated
against observed catchment response, often river discharge. This may be performed in different
details depending on the intended purpose of the model’s application, availability of data for
model calibration, and the involved computational effort. In many applications of regional
hydrologic models, calibration is often performed for a river basin as a whole. Although this
approach may lead to acceptable model performance in reproducing the aggregated model
response from the basin, small-scale variability of certain processes may not be well repre-
sented, and the local climate change signal projected by the model may not be robust
(Krysanova et al. 2018). In some applications, however, calibration is performed with more
detail by allowing all or a subset of the model parameters, such as soil and land use dependent
parameters, to vary locally while keeping general parameters constant throughout, and tuning
the model against observed catchment response simultaneously at several locations within a
basin. The model parameters that vary locally are often linked to catchment physiographic
characteristics in order to ensure their physical consistency across the basin (e.g., Hundecha
et al. 2016). This may increase the confidence one attributes to the climate change projections
made by the model at local scales (Krysanova et al. 2018).

Regional hydrological models are also employed for continental studies (e.g., Donnelly
et al. 2017). The models are typically parameterized through calibration at selected large basins
as the computational effort can be prohibitively high to allow calibration at all locations where
observations are available. Krysanova et al. (2018) compared climate change impact projec-
tions made by a model parameterized in such way and a model calibrated with more local
detail for a specific catchment. Their results showed that the model calibrated for continental
applications missed some important local processes that were captured by the locally calibrated
model.

The objective of this paper is to assess the effect of model calibration strategy of a
continental regional hydrological model on the projected climate change impact on hydrolog-
ical indicators. We specifically aim to assess the differences in the climate change projections
of the hydrological indicators when the model is calibrated at a set of major basins only,
compared with a detailed calibration that accounts for the local variability of the model
parameters. We employ a semi-distributed hydrological model setup at a pan-European scale
by subdividing the model domain into tens of thousands of subcatchments and perform
different model calibrations. We assess the climate change signals projected by the differently
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calibrated models by forcing the models with an ensemble of climate model outputs. Further-
more, we assess the sensitivity of the climate change signal when an ensemble of hydrological
models is used. This ensemble was generated through sampling of specific parameters of the
model calibrated in a detailed way using the Generalized Likelihood Uncertainty Estimation
(GLUE) approach (Beven and Binley 1992).

2 Data and method

2.1 The E-HYPE model

The continuous process-based hydrological model HYPE (Lindstöm et al. 2010), which
simulates components of the catchment water cycle and water quality at a daily or hourly
time step, is employed. The model is semi-distributed, in which a river basin may be
subdivided into multiple subcatchments, which are further subdivided into hydrological
response units (HRUs) based on soil type and land use classes. It has conceptual routines
for most of the major land surface and subsurface processes (e.g., snow/ice accumulation and
melting, evapotranspiration, surface and macropore flow, soil moisture, discharge generation,
groundwater fluctuation, aquifer recharge/discharge, irrigation, abstractions and routing
through rivers, lakes and reservoirs, solid-matter and dissolved nutrient pools) that are
controlled by a number of parameters that are often linked to physiography to account for
spatial variability and estimated through calibration.

The model parameters can generally be categorized into HRU and general parameters. The
HRU parameters are either soil or land use type dependent. Unique parameter values are
estimated for each soil or land use type and are applied throughout the model domain. The
general parameters, such as the routing parameters, are subcatchment scale parameters and
may be assigned constant values throughout the model domain or estimated separately for
different parameter regions. They can also be estimated using a regionalization approach as
functions of catchment descriptors (see “A classification-based stepwise calibration” section).

The model was set up for the pan-European domain and is referred to as E-HYPE
(Donnelly et al. 2016). The version used in the present study covers an area of 8.8
million km2 and is subdivided into 35,408 subcatchments with an average size of 248 km2.

2.2 Data

A range of physiographic and land management data, including reservoirs and irrigated
areas, were used in setting up the model (Donnelly et al. 2016; Hundecha et al. 2016), and
detailed information can be found at https://hypeweb.smhi.se/explore-water/. Originally,
daily discharge data at more than 3000 stations were obtained from different sources. A
subset of the stations was used in this work for model calibration and validation (see
Section 2.3.2). Another difference to the previous E-HYPE applications is that we used
the observational meteorological forcing from EFAS-Meteo (Ntegeka et al. 2013). The
version used here is from May 2019 and was a pre-release for the version that is being
ingested into the Copernicus Climate Change Service and its catalog (C3S). Only daily
mean surface air temperature and precipitation are used for the current study. The dataset
covers most of Europe, with a resolution of 5 km at daily time steps, and the temporal
coverage is from 1990 until present.
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Compared with other standard open datasets, such as E-OBS (Cornes et al. 2018),
EFAS-Meteo was chosen as it is used as a reference dataset for the hydrological models
in the operational service for the water sector in C3S, from which model results are
openly distributed. E-OBS (version 20.0e) was used to evaluate the quality of EFAS-
Meteo.

The state-of-the-art in regional climate projections for Europe is currently the Euro-
CORDEX ensemble at 0.11 degree (about 12.5 km) horizontal resolution. A sub-selection
of models was done due to computational expenses. The sub-ensemble was chosen to sample
different driving global climate models and regional climate models: EC-Earth (r12i1p1) with
RACMO22E, EC-Earth (r12i1p1) with RCA4, HadGEM2-ES with RACMO22E (v2),
HadGEM2-ES with RCA4, and MPI-ESM-LR (r1i1p1) with RCA4 (v1a). Each model was
bias-adjusted towards the EFAS-Meteo reference dataset, separately for temperature and
precipitation, using a method described in Text S1in the supplementary material. The analysis
is restricted to the RCP8.5 greenhouse gas concentration scenario, and simulations cover the
period 1970–2100.

Monthly actual evapotranspiration data were obtained for the period 2000–2012 from the
Moderate Resolution Imaging Spectroradiometer (MODIS) dataset (Mu et al. 2011). The
product is based on a Penman-Monteith approach, and the dataset covers the entire domain
at a spatial resolution of 1 km, which is later spatially aggregated to the E-HYPE model
resolution.

2.3 Methods

2.3.1 Data quality assessment

Observed discharge time series used for calibration and evaluation of E-HYPE were quality-
assessed during the model setup phase. The assessment consisted of evaluation of station
metadata and time series quality. The former included cross-checking station positions,
upstream areas, and other available metadata such as river names between source databases
and E-HYPE setup and manual adjustments of the model setup where necessary. Time series
were visually assessed for erroneous data, e.g., interpolated values in observation gaps, and for
the influence of upstream regulation, e.g., plateaus in hydrographs or breaks in flow duration
curves. Stations with evidence of upstream regulation as well as with less than 3 years of data
during the calibration period were excluded.

The reference forcing data (EFAS-Meteo) was evaluated against the E-OBS gridded
dataset, which is the current standard open dataset for pan-European applications. The
evaluation consisted of comparing different aspects of the temperature and precipitation
data using the following indicators: annual mean temperature and precipitation, the
number of precipitation events above 10 mm/day, and number of consecutive dry day
periods of at least 5 days, with a dry day defined as a day with precipitation less than
1 mm/day.

2.3.2 Calibration and spatiotemporal evaluation of E-HYPE

Three approaches of model calibration were employed in this work, which are described in the
following subsections. Calibration was performed for a set of parameters identified in
Hundecha et al. (2016) as important (See Table S1).
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Calibration using downstream stations in major river basins Model calibration was per-
formed at a set of river flow gauging stations from the major river basins with at least 3 years
of data during 1991 to 2010 and located as close to the sea as possible, i.e., not draining into
other rivers. The station must have drained at least 70% of the basin as well. The basins had a
minimum area of 5000 km2, which ensures preservation of sub-grid variability in the forcing
data. Fifty-seven stations were selected, but some were excluded because they were very close
to others or were outside the EFAS-Meteo domain, which left 37 stations, each from an
independent river basin (Fig. 1a, Table S2). Every subcatchment located upstream and
downstream of each of the stations was assigned the same parameter set estimated at the
station. Subcatchments outside the 37 major basins were assigned the parameter set of the
closest calibrated basin.

The SAFE toolbox (Pianosi et al. 2015) was used to generate 15,000 uniformly distributed
samples of parameter set (see Table S1) following the Latin hypercube strategy. Identical HRU
parameters were applied to all basins, but the general parameters were allowed to vary between
basins. Since the HRU parameters are the same in all basins, simultaneous calibration was
performed at all 37 stations. The sum of the Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe
1970) at all stations was employed as a basis of the objective function. Since a poor
performance at some stations could be offset by a good performance at others, this could lead
to an unbalanced model performance between the stations. The objective function was,
therefore, modified in such a way that more emphasis is given to the station where the
performance is the poorest (Hundecha and Bárdossy 2004):

Obj ¼ ∑
N

i¼1
NSEi þ NminNSE ð1Þ

Fig. 1 Stations used for calibration of E-HYPE using different approaches. The catchment groups shown in (b)
are those used for regionalization of the M00 model
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where N is the number of stations and minNSE is the minimum of the NSEi values. The model
is herein referred to as the benchmark (BM) model.

A classification-based stepwise calibration This is a more detailed calibration approach,
where a catchment classification was performed based on catchment physiographic and
climate descriptors and calibration was performed for a set of gauged catchments within
each group of catchments. The method is fully described in Hundecha et al. (2016) and is
only briefly described here. The meteorological forcing data used in the present study (EFAS-
Meteo) does not cover a portion of the eastern part of the E-HYPE domain. Therefore, fewer
stations were used for model calibration and validation in this study than in Hundecha et al.
(2016).

Catchment classification was first performed by employing a hierarchical minimum-
variance clustering method using catchment area, mean catchment elevation and slope, land
use classes, soil types, and mean annual catchment precipitation and temperature as catchment
physiographic and climate descriptors. This resulted in 16 groups of catchments. Gauging
stations whose upstream subcatchments are entirely contained within each group were iden-
tified for model calibration. A minimum drainage area of 1000 km2 was set as a requirement
for the stations since the forcing data were estimated from grids and the sub-grid variability
may not be well represented for smaller catchments. Fifty-eight stations were identified, which
are different from the 37 stations used to calibrate the BM model (Fig. 1b; Table S2).

The HRU parameters were estimated by calibrating the model simultaneously at the selected
gauged catchments in each catchment group at a time and repeating the procedure to the other
groups iteratively. Each group of catchments was found to have one or two dominant land use and
soil types. For each group, parameters of the dominant soil and land use types were calibrated
while setting arbitrary values within the parameter range for the other soil and land use types. The
HRU parameters estimated in one group of catchments were then transferred to the next, and
parameters of the dominant soil and land use types in the new group were estimated in a similar
way as in the previous group. The procedure was repeated until all groups are covered. During this
stage of calibration, the general parameters were set constant for all catchments and were
manually tuned in such a way that certain features of the simulated hydrograph, such as time
shift, which are modeled using the routing parameters, are corrected. The whole procedure was
repeated a few times until the overall model performance showed little change.

In the second step of model calibration, the general parameters, which were set constant
throughout the model domain during the first step of calibration, were estimated using a
regionalization approach. A method described in Hundecha and Bárdossy (2004), where a
linear relationship between a model parameter and a set of catchment descriptors is assumed a
priori and the coefficients of the linear function are estimated during model calibration, was
employed. The parameter estimation was performed separately for each group of catchments.
The number of stations in some of the 16 groups was too few to allow a reasonable estimation
of the general parameters as functions of catchment descriptors. Therefore, catchment groups
with less than 5 stations were merged into groups with similar land use and soil types that have
more than 5 stations. This resulted in 8 groups (see Hundecha et al. 2016). The HRU
parameters were not adjusted in this step.

Since the calibration at each step was performed simultaneously at multiple stations, the
objective function given in Eq. 1 was employed. An automatic calibration based on the
Differential Evolution Markov Chain (DE-MC) algorithm (Ter Braak 2006) was employed,
together with manual tuning. This model is referred to as M00.
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A multi-model ensemble In order to account for the uncertainty in the estimated model
parameters, a multi-model ensemble was generated. This was performed by first identifying
the most sensitive parameters for the model calibrated using the procedure described in “A
classification-based stepwise calibration” section. The dominant soil and land use parameters
corresponding to the eight catchment groups, along with the general parameters (Table S1),
were sampled using the SAFE sensitivity and uncertainty analysis toolbox (Pianosi et al. 2015)
to generate 10,000 randomly distributed samples with the Latin hypercube strategy. The model
performance was assessed in terms of NSE.

Parameter samples whose model performance was above a subjectively defined threshold
(top 1% of the 10,000 samples) were accepted based on a GLUE-type parameter identification
approach (Beven and Binley 1992). In the next step, the top 1% samples were combined across
the eight groups to provide narrower identifiable parameter ranges, and 15,000 sets were
sampled within these ranges with the same strategy as before. These new global sets were then
evaluated against all calibration stations, and parameter sets were chosen as in the previous
step, providing a number of acceptable global parameter sets. Finally, the best 10 sets were
selected as the multi-model ensemble, herein referred to as M01-M10.

Model evaluation Temporal and spatial model evaluations were performed for all three
model variants. Temporal validation was performed by employing the standard split-
sampling technique. Model calibration was performed for the period 1991–2000 and temporal
validation was performed for 2001–2013. Spatial validation was performed using a set of
independent validation stations that were not used for model calibration. Three hundred
eighty-eight common validation stations were selected for evaluation of all models (Fig. 1c).
Two model performance measures, NSE and percentage model bias (Pbias), were used for
both temporal and spatial model evaluation.

The M00 model and the multi-model ensemble were further evaluated in terms of their
ability to reproduce certain features of the daily hydrograph. A set of flow signatures computed
from the observed and simulated daily flows for the entire modeling period (1991–2013) were
compared. Mean specific daily flow (Qmean) and specific daily flows that exceeded 5% (Q95)
and 95% (Q05) of the total number of days were used to characterize the overall daily mean
and high and low flows, respectively. The coefficient of variation of the daily flow (CV) was
also used to characterize the daily flow variability.

The models’ performances in reproducing trends in the annual values of the mean and
extreme flow signatures were also evaluated. The distribution-free rank-based Mann-Kendall
trend test (Kendall 1975) was employed. As the maximum length of the annual values is
24 years due to the forcing data period, the distributional assumption of the test statistic may
not hold for the assessment of the test significance level. Therefore, a resampling technique
based on permutation (Good 1994) was employed to compute the test significance level.
Trends were considered significant at 5% level.

Furthermore, model state variables other than discharge were used to evaluate the models’
performance. Water quality variables total nitrogen (TN) and total phosphorus (TP) were used
for evaluation. For both variables, observed time series of in-stream concentrations were
available at sampling sites across the model domain, typically with biweekly to monthly
frequencies. Moreover, nutrient load estimates were calculated using modeled discharge at the
sampling sites. Model performance was evaluated for the M00 and ensemble models at 509
(TN) and 718 (TP) sampling sites using Pbias in TN and TP concentrations and long-term
average load differences between the ensemble members and the M00 model. Performance
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averages and spreads across the model domain were used to accept or reject prior model
ensemble members, which were selected based on discharge performance alone. The evalu-
ation was conducted subjectively based on relative performance differences between proposed
ensemble members.

Similarly, modeled monthly actual evapotranspiration was evaluated against the corre-
sponding MODIS dataset in the period 2000–2012 using Pbias and correlation coefficient
(CC). We hypothesize that the MODIS evapotranspiration dataset is of adequate quality both
in space and time and can therefore be used as a reference to evaluate the hydrological models.

Krysanova et al. (2018) suggest that regional hydrological models used for climate change
impact assessment be evaluated using a 5-step procedure: assessing observational data quality;
performing model calibration and validation over periods of contrasting climate; validating at
multiple sites within a basin and for multiple variables; validating in terms of reproducing
hydrological indicators of interest; and in terms of reproducing trends or lack thereof in
hydrological indicators. The model evaluation strategy presented above and the data quality
assessment presented in Section 2.3.1 were partly designed based on this suggestion. We
followed all steps except model calibration and validation over periods of contrasting climate.
As running E-HYPE for different periods of contrasting climate identified for a large number
of calibration and validation stations is computationally cumbersome, we did calibration and
validation over a common period for all stations.

2.3.3 Climate change impact assessment

All model variants were run using forcing data from a sub-ensemble of the bias adjusted Euro-
CORDEX (see Section 2.2) for the period 1970–2100. The following hydrological indicators
were computed from the model outputs separately for the periods 1971–2000 and 2071–2100:

& Mean river discharge (m3/s): defined as the annual or seasonal simulated outflow from a
subcatchment

& Maximum river discharge (m3/s): defined as the annual daily maximum discharge
& Mean runoff (mm/month): defined as the annual or seasonal mean daily runoff
& Mean annual or seasonal soil moisture: calculated as the root zone soil moisture as fraction

of the maximum water content volume and depends on the soil type (land use)
& Mean annual or seasonal actual aridity: defined as the ratio between actual evapotranspi-

ration and precipitation)

The assessment of climate change impact was performed by calculating first the ensemble
mean of the entire climate model-based simulations and then taking the difference between the
future and historical time periods in relative terms, i.e., (future – historical) / historical*100.

3 Results and discussion

3.1 Assessment of data quality

As shown in Fig. S1, the EFAS-Meteo temperature is very similar to that of E-OBS, except
for some differences with strong topography. This is largely a resolution effect, since
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remapping to a common E-OBS grid did not account for height differences. The precipita-
tion mean shows larger deviations, which is related to the strong spatial heterogeneity of this
variable which requires high station network density for reliable maps. Deviations are
therefore likely related to both the underlying station network and the interpolation method.
The most notable deviations are in north-west UK-Ireland and Scandinavia and generally in
regions of strong topographic variations. It is difficult to determine which dataset is more
correct, and more in-depth analysis comparing with gauge data would be required. How-
ever, for large parts of the continent, the differences are within ± 5%, which is a comforting
result. In Eastern Europe, one can see “spots,”which are traced back to EFAS-Meteo, which
seems not to be able to spread the sparse gauge information there. This is, however, outside
the hydrological simulation domain and is therefore not accounted for in the quality
assessment. Extreme precipitation has similar characteristics as the mean precipitation,
and here one can also see political borders (e.g., Germany), which indicate large gradients
in the underlying network density.

Consecutive dry day periods longer than 5 days are quite similar within mostly 5% but with
some very strong deviations in Turkey and Greece. It looks like E-OBS has some issues here,
with clear extrapolations in the southern and eastern Mediterranean countries. In conclusion,
we can determine that EFAS-Meteo is a fair alternative to the state-of-the-art dataset E-OBS,
however, with some local large differences, for better or worse.

3.2 Model calibration and evaluation

3.2.1 Temporal and spatial model evaluation

Generally, the difference in the model performance at the stations used for model calibration in
the calibration period (1991–2000) between all models is not very big (Fig. 2). However, one
can see that the performance of the benchmark (BM) model is slightly worse than the other
models, both in terms of NSE and Pbias, while the model calibrated in a more detailed way
(M00) is similar to the ensemble models (M01-M10) with slightly better performance. The
median NSE at the calibration stations for BM and M00 are 0.39 and 0.59, respectively, while
it ranges between 0.38 and 0.5 for the ensemble models. Based on evaluation of the ensemble
models against water quality variables, three members were excluded from the ensemble (see
Section 3.2.4). The excluded models are marked in Fig. 2. For the remaining model ensemble,
the median NSE ranges between 0.44 and 0.5. In terms of Pbias, all models underestimate the
mean flow with median values of − 17% and − 7% for BM and M00, respectively, and
between − 10 and − 7% for the ensemble models. It should, however, be noted that the
calibration stations used for BM are different from the stations used to calibrate the other
models. Spatially, the model performance shows deterioration from north-west towards south-
east across the model domain for all model variants (Fig. 3).

The model performance in terms of NSE at the calibration stations is generally slightly
better in the validation period (2001–2013) than in the calibration period for all models, with
median NSE of 0.43 and 0.58, respectively, for BM and M00 and ranging between 0.49 and
0.54 for members of the model ensemble. The model bias also shows a slight improvement for
many of the models but is not as clear as the performance in terms of NSE.

The performance in terms of NSE at the independent validation stations in the model
calibration period is generally similar to the corresponding performance at the calibration
stations for the ensemble models, with slightly more spread. The median NSE is slightly
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higher in the validation stations for BM, while it is similar in both the validation and
calibration stations for M00. Similar to the calibration stations, the median NSE at the
validation stations is slightly better for M00 than for the others. In terms of the model bias,
BM generally underestimates the flow at the validation stations with lower median model bias
than at the calibration stations but with more spread among stations. M00, on the other hand,
slightly overestimates the flow at the validation stations with less spread than in the calibration
stations. For the ensemble models, the model bias at the validation stations is very low with
less spread than in the calibration stations.

While the model performance in terms of NSE at the validation stations is slightly better in
the validation period than in the calibration period for all models, the distribution of the model
bias is similar in both periods for all models. Figure S2 also shows comparison of the model
performance between BM and M00 at the validation stations by grouping them into the eight
catchment groups. Generally, M00 performs better with less spread both in terms of NSE and
bias except in one group (group G). This group is characterized by shallow soil in high
elevation areas with high mean annual precipitation.

Fig. 2 Distributions of model performance in terms of (a) NSE and (b) Pbias for the calibration and validation
stations during the calibration and validation periods (For each group of stations, left box shows calibration
period and right box shows validation period)
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3.2.2 Model performance in terms of flow signatures

M00 and the ensemble models generally reproduce the mean flow at the stations well, as
shown in Fig. 4. There is a tendency for all models to underestimate the flow at a few stations
with very high specific flow. Variability of the daily flow is reproduced fairly well by M00
with the points scattering well around the 1:1 line (Fig. 4). The ensemble models, however,
overestimate the variability. M00 estimates the lower magnitudes of the high flow (Q95) well,
while it underestimates the higher magnitudes. The ensemble models also underestimate the
higher magnitudes but slightly overestimate the lower magnitudes. M00 generally underesti-
mates the higher magnitudes of the low flow (Q05), while the ensemble models underestimate
the low flow over the whole flow spectrum. This reflects the higher variability of the daily flow
estimated by the ensemble models.

3.2.3 Trends in annual flow signatures

Trends in the annual mean and extreme daily flow signatures were assessed at 180 stations
with at least 20 years of continuous flow data. Significant trends were detected at a small
fraction of the stations for all the investigated signatures (Table 1). Significant trend at 5%
level was detected at 8.3% of the stations for the annual mean flow for the observed discharge
time series, with more positive than negative trends. For the modeled data, significant trend
was detected at slightly more stations for both M00 and the ensemble models. However, the
trends match between the observed and modeled mean annual flows at only around 1.5% of
the stations. The trends are generally similar for Q05 and Q95 as well, with significant trends
in Q05 at more stations. The number of stations where the trends in the observed and modeled
flow signatures match is also the highest for Q05. No significant trend was detected at the

Fig. 3 Spatial pattern of performance of the BM and M00 models in terms of NSE and Pbias

Climatic Change



majority of the stations for all modeled and observed flow signatures, and the percentage of
matching non-trend stations is also high, ranging between 67 and 82% for the different models
and flow signatures (Table 1). Similarly, the percentage of stations with matching significant
trend and no trend ranges between 69.3 and 83.8%, suggesting that both M00 and the model
ensemble perform well in reproducing trends or lack thereof in the flow signatures.

3.2.4 Model evaluation against additional variables

The ensemble models (M01-M10) showed a generally positive bias in the in-stream nutrient
concentrations with a wider range of variability across the model domain, while M00
underestimated the concentrations with less variability (Fig. 5a). This systematic difference
is a reflection of the discharge bias differences shown in Fig. 2, as larger discharge volumes
have a diluting effect on modeled nutrient concentrations. Nutrient loads, i.e., the amount of
nutrient transported with stream flow, provide complementary information for evaluating
nutrient model performance (Fig. 5b). Load differences compared with the reference model
M00 are comparatively large for nitrogen in three members (M03, M04, M10) and phosphorus
in one member (M04). Based on this evaluation, these members were considered inadequate
for further implementation and were removed from the model ensemble. For M03, poor
nutrient performance coincides with a notable performance drop in discharge NSE at the
validation stations, whereas for M04 and M10, nutrients added new, albeit subjective, con-
straints on ensemble members.

Fig. 4 Scatter plots of observed vs simulated flow signatures for the M00 add ensemble models
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Evaluation of M00 and the ensemble models against the MODIS actual evapotranspiration
shows that the models are capable of representing the long-term actual evapotranspiration and
its temporal dynamics (Fig. S3). All models tend to underestimate actual evapotranspiration,
with the median values varying between − 10 and 0%. However, the models can adequately
represent the actual evapotranspiration temporal dynamics, with the median correlation coef-
ficient above 0.9 for all models. In particular, the models tend to underestimate actual
evapotranspiration in northern Europe and overestimate in Eastern Europe and the Mediterra-
nean. The dynamics are well represented over the entire domain, with deterioration of
performance (i.e., correlation coefficient) in the Mediterranean region (see Fig. S4).

3.3 Comparison of projection of climate impact

Differences in the climate change impacts were investigated across the differently calibrated
models. Table 2 gives an overview of the results for all hydrological indicators on an annual
basis, supplemented by Table S3 with results for each season. M00 and the median result of
the model ensemble (<MXX>) are similar for all indicators, except for the slightly higher
change in annual maximum discharge for <MXX>. However, results for BM differ distinctly
from that of M00 and <MXX> for different indicators. The median changes projected for
mean annual discharge and runoff by BM are close to zero, but the distributions are biased
towards negative changes with the 5th and 95th percentile changes around − 50% and 25%,
respectively. M00, on the other hand, projected a moderate increase (median values of 8% and

Fig. 5 Performance of model M00 and the ensemble models (M01-M10) when evaluated using total nitrogen
(TN) and total phosphorus (TP). Distributions of performances at all available sites as (a) percentage bias in
concentrations and (b) as difference in load estimates (using modeled discharge) compared with M00 load
estimates
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6% for annual runoff and discharge, respectively), with the 95th percentile changes compara-
ble with that of BM. However, the 5th percentile change is around − 40%, suggesting that BM
projects a drier pattern. This is further confirmed by the projected changes in soil moisture. A
major portion of the distribution of the change projected for soil moisture by BM is negative,
with the 95th percentile change around 0%. The median and 5th percentile changes projected
by M00 are comparable with that of BM, but the 95th percentile change is considerably higher
(10%, see also Table 2). Both BM andM00 projected an increase in aridity with similar ranges
of change. The median change projected by BM is, however, slightly higher than that of M00
(9% versus 5%). Both BM and M00 projected comparable increase in the annual maximum
discharge with a median change of 11% (See Table 2).

Seasonally, all models projected a strong increase in runoff and discharge in winter (median
increase of between 30 and 43%), with M00 projecting slightly more increase than BM
(Table S3). They projected a moderate decrease in summer with comparable median values
between the models and stronger decrease in discharge than runoff (around 20% versus −
11%). They all projected a strong and comparable decrease in soil moisture in summer, with
median values between − 23 and − 29%. BM projected a slight decrease, while M00 and <
MXX> projected a slight increase in winter (See Table S3). Aridity increases in all seasons,
but the change is the strongest in winter, with median increases of around 250% by all models.
In summer, the median increase projected by BM is twice as much as that of M00 (23% versus
12%).

As shown in Fig. 6, the main patterns of the change signals in annual mean discharge
projected by M00 and BM have the same overall picture of a wetter north and drier south. This
is mainly due to a strong winter increase in the north (Figs. S9, S21), which is to a less extent
offset by a decrease in summer, except for central Europe (Figs. S11, S23). The differences
between the models are generally second order to this but can have large impacts on particular
catchments and also seasonal dependency (see Figs. S9–S24). The summer changes in

Table 2 Overview of ensemble mean relative changes between the end of century (2071–2100) and the historical
period (1971–2000) ((future – historical)/historical*100), for different indicators for the three main model setups

[%] BM M00 <MXX>

Runoff P5 − 46.7 − 32.8 − 36.3
P50 1.1 8.0 7.7
P95 28.1 29.4 30.8

Discharge P5 − 50.9 − 37.9 − 40.4
P50 − 0.6 6.0 5.6
P95 26.0 28.2 28.5

Aridity-actual P5 0.2 − 0.5 − 0.4
P50 9.1 5.2 5.7
P95 36.7 32.8 34.3

Aridity-potential P5 11.8 11.7 11.7
P50 27.4 27.5 27.5
P95 68.0 67.6 67.6

Soil moisture P5 − 30.3 − 30.4 − 30.5
P50 − 9.4 − 8.3 − 8.6
P95 0.4 10.3 12.5

Ann. max discharge P5 − 26.7 − 26.7 − 24.6
P50 10.5 11.1 15.9
P95 52.4 56.9 63.0

The multi-model ensemble is shown as the median of the seven members. The 5th, 50th and 95th percentiles of
the spatial patterns are presented. All results are for RCP8.5
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discharge in central Europe, for instance, are less pronounced in M00 compared with BM. A
complete presentation of the absolute values for the historical period, the relative changes by
the end of the century, and the difference to BM is shown in the supplementary material for
annual mean (Figs. S5–S8) and by season (Figs. S9–24).

The differences in the change signals (Fig. 7) in the mean annual runoff and discharge
between M00 and BM show similar patterns with a wetter M00 in most of the domain and
especially in southern Europe. Soil moisture shows the opposite pattern but with stronger
differences in Scandinavia (Fig. S7). Aridity shows clear boundaries between the sub-areas of
BM used for the calibration (Fig. S8). The mean annual maximum discharge shows a distinctly

Fig. 6 Annual mean discharge for the BM (top row), M00 (middle row), and median of the multi-model
ensemble (bottom row) for the historical period 1971–2000 (left column), relative change by the end of the
century 2071–2100 under RCP8.5 (middle column), and differences between the relative changes of M00 and
MXX to BM (right column), e.g., the bottom right panel is the absolute difference between the bottom center
panel and the top center panel, in percentage units

Fig. 7 Difference between the relative changes M00 and BM in percentage units, as in the right column of Fig. 7
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different pattern compared with mean discharge but with spatial homogeneities that suggest a
model calibration issue, rather than random noise (Fig. S6). Seasonally, the catchment scale
variability in the differences between the projections of BM and M00 becomes more apparent
for all indicators, as the variability becomes visible even over smaller regions (Figs. S9–S24).

3.4 Discussion

The changes projected in the investigated hydrological indicators under a climate change
scenario by the hydrological models calibrated in different ways show similar large-scale
spatial patterns. These patterns are generally in agreement with previous European studies on
the impact of climate change, indicating a generally wetter north and drier south (e.g.,
Donnelly et al. 2017; Lobanova et al. 2017; Schneider et al. 2013). For many of the indicators,
however, differences appear in the magnitudes of the projected changes between the BM and
M00 models that have distinct spatial pattern. BM projects a stronger decrease in runoff in the
southern part of Europe in comparison with M00. In some areas of central Eastern Europe and
eastern Spain, where the models project increase in runoff, BM projects less increase than
M00, as shown in Fig. 6 (right column). This highlights that BM generally projects a drier
condition than M00. This general pattern mirrors the BM model’s tendency to underestimate
the flow more than M00 does (see Section 3.2.1).

The impact of the scale at which model calibration was performed on the climate projection is
more apparent when one examines the projections made for the aridity index. Unlike runoff and
discharge, the difference in the projections between the different models does not follow a pattern
along the direction of the change signal. Whether one of the models projects a stronger change
signal than the other appears to be unique to each of the major basins used for the calibration of
BM (see Fig. 7). The difference in the model simulations of the index is controlled by the
simulated evapotranspiration. The region-dependent evapotranspiration parameter has the same
value in all subcatchments of a major basin for BM, while it can be different in each subcatchment
for M00 and the ensemble models. Differences in the change signals between subcatchments
within a major basin originate from this difference in the evapotranspiration parameter.

The similarity in the distributions of the changes projected by the M00 model and the model
ensembles (see Table 2) highlights how model parameter uncertainty propagates into the projec-
tion of the hydrological indicators relative to the uncertainty of the climate models. The stations
used for model calibration for the M00 and the ensemble models are the same, and the only
differences are the model calibration procedures. Ensembles of parameter sets were sampled
based on the GLUE approach. Transfer of model parameters to other catchments was performed
using the same regionalization scheme as in the M00 model. The result suggests that despite the
variation in the model performance between M00 and the model ensemble, as well as among the
ensemble members introduced by the differences in the parameter sets, the uncertainty introduced
to the climate change projection by the model ensemble is not that significant.

Although it is difficult to state which of the models provide a more credible projection in
the climate change signals on the hydrological indicators, it is important to highlight here that
M00 results in a more realistic representation of the hydrological processes at a more spatial
detail than BM. M00 is likely to provide a physically consistent projection across the model
domain due to the incorporation of catchment physiographic features in the estimation of
parameters in addition to the finer spatial scale of the catchments used for model calibration.
The BM model may miss local variations in certain processes due to the lumped larger scale
parameterization of some of the processes (Krysanova et al. 2018). Furthermore, the absence
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of variation in the climate impact projection signals between M00 and the ensemble models,
which were all parametrized at a similar spatial scale despite the difference in the calibration
procedures, increases our confidence in the projection made by M00.

4 Conclusions

The large-scale patterns of the change signals for different hydrological indicators projected at
a pan-European scale by a regional hydrological model calibrated with different levels of detail
were found to be similar and are generally consistent with the results of several previous
European studies. However, the change signal strength varies between the models. For the
long-term discharge and runoff, the difference in the change signals appears to be related to the
model bias in terms of reproducing the long-term mean runoff. The BM model, which more
strongly underestimates the long-term runoff, projects a stronger change signal where the
model projects a drier signal and weaker signal where the model projects a wetter signal. For
some of the indicators, the differences in the projected signals mirror the spatial differences in
the model parameters that control processes that affect the indicators, suggesting the need for a
robust model parameter estimation scheme that captures the local variability of the parameters.
We can conclude that the calibration strategy can have a large impact at the catchment scale
but that the overall pan-European message of the projections remains similar.

The distributions of the median change signals projected by an ensemble of models
introduced by sampling parameters using the GLUE approach from the regionalized model
were found to be similar to the distributions of change signals projected by the regionalized
model for all hydrological indicators. This suggests that the projected climate change signals
are less sensitive to the absolute magnitudes of the model parameters than their spatial
variability as long as the model performance does not strongly vary between the models.
This, however, needs further investigation by setting up a simulation experiment over a wider
range of model parameters. Finally, although our results suggest that the hydrological model
introduces less uncertainty to the climate impact projection than the climate models, a more
comprehensive uncertainty analysis would enable to quantify the contribution of the different
components of the model chain.
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