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Abstract: Run of river (RoR) hydropower systems, despite being one of the most cost-effective
and environmentally benign energy technologies, have the disadvantage that production is not
constant because it is subject to a high variability in precipitation and snow cover. In addition,
the management of RoR plants has to comply with some particular operating conditions, but also
with some environmental flow requirements. This work presents the assessment of the main inputs
included in a climate service, historical local data and the seasonal forecast of water inflow to
RoR plants, which are used to predict the operability and the expected energy production. The
analysis is presented through the application in a pilot RoR system located in the south of Spain,
in a semi-arid Mediterranean area impacted by snow, where seasonal forecasting is especially
challenging. The results show the high interannual variability of the operation in this kind of facilities.
The outcomes indicate that seasonal climate forecast information would improve the prediction of
observed river streamflow by 7.4% in reliability and 3.2% in sharpness compared to the current
operational forecast based on historical data. The climate forecasts thus provide valuable information
for the exploitation of available water resources, which generates a significant value for the operation
of the plant and the energy production market.

Keywords: climate service; seasonal forecast; energy production; Mediterranean high-mountain
climate; reliability; sharpness

1. Introduction

Since the publication of the Renewable Energy Directive (2009/28/EC), there has been a global
panorama in which renewable energy sources are being encouraged and promoted to meet the
objectives of reducing greenhouse gases and fighting climate change. Of the total renewable energy
production in Europe, the majority was generated from hydropower, accounting for 425.8 TWh [1].
In the midst of a “renewables boom”, governments and business sectors should not forget that
renewable energy generation and operations planning are markedly affected by weather meteorological
events, which affect the availability of energy but also the demand for electricity and the use of energy.
The renewable energy production is not adapting to the increase in the energy demand, mostly because
the infrastructure is becoming obsolete, and this becomes even more critical in a climate change (CC)
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scenario. According to European Commission (EC) [2], some of the main energy infrastructures
affected by CC are hydropower plants located in snow-covered mountainous areas, where climate
change is expected to result in a later and shorter snow season and less snow coverage. In addition,
the water cycle components are expected to change significantly, i.e., increasing or decreasing water
availability for hydropower generators, depending on local and regional conditions.

Making energy infrastructures resilient to climate change requires dedicated policies and
sophisticated decision-making measures to build adaptive capacity [3]. The management and operation
of hydropower systems can be supported by forecast information through climate services (CS) [4].
Thus, a seasonal forecast provided by efficient and accurate climate services will be required to avoid a
demand-driven overstress of hydropower infrastructures. For the future planning of the hydropower
plant and new installations, CS can provide managers with projections of climate scenarios in order
to obtain information about potential areas for higher production in a future climate. In existing
facilities, hydropower managers have to deal with the uncertainty about the energy production for the
coming days and season, which is also related with the optimization of financial actions in the energy
market. Moreover, when it comes to reservoir hydropower plants, hydropower energy contributes to
the stability of the electrical system by providing flexibility and grid services. Having a reliable and
confident prediction of the water availability would help managers to conform to the EU environmental
laws, but also to schedule maintenance tasks during the shutdown periods, otherwise the system will
suffer an opportunity cost. In brief, addressing climate risk in investment, operation, and management
tasks can avoid later costs, by using new Information Technology.

In the framework of the H2020 project CLARA (climate forecast-enabled knowledge services),
a CS able to support small hydropower systems’ management has been developed. The service is
targeted at end-users, mainly technicians in charge of the control operation center of hydropower
systems. SHYMAT (small hydropower management and assessment tool), as we called the CS,
was implemented in a run of river (RoR) pilot system in a Mediterranean high mountain area of
southern Spain, where snow has a critical influence over the hydrology of the downstream areas.
The technological tool is presented by Contreras et al. [5], whom describe its structure, requirements,
utilities, and the data and models used in detail. Contreras et al. [5] give insight into how this kind
of service could change traditional management (normally based on past experience), by providing
a probability range of the future river flow and thus predicting the availability of water for energy
production. The hydropower managers can also benefit from the CS through other valuable information
related to environmental issues, operation and maintenance tasks in the hydropower system. The
state-of-the-art CS is based on cutting-edge EU knowledge through the newly created Copernicus
Climate Change Service (C3S) [6], which provides seasonal forecast data as input to the developed
CS. In this way, SHYMAT tailors technical information for hydropower plant operation according to
management experience, which would lead to more robust knowledge and contextual applicability of
the seasonal climate forecasts [7].

Besides the CLARA project, other EU-funded projects address the development of weather and
climate services by targeting the energy system (CLIM2POWER, IMPREX, MARCO, PUCS, S2S4E,
SECLI-FIRM and WINDSURFER). However, the exchange of ideas between CS developers and potential
endusers in the framework of the CLARA project showed that there are very limited experiences in
the use of CS for renewable energy [8]. One of the main reasons is the lack of confidence in this kind
of tools and accuracy of the forecast emerged as the most important requirement and a key element
to generate trust in the services [9]. Besides an optimal design to visualize the results according to
end-user requirements and needs, forecast skill assessment and communication are highly valued to
understand and further exploit the information from the service.

Climate is chaotic and perfect forecasts will thus never be achieved. To convey their uncertain
nature and reflect the amplification of inevitable initial and model uncertainties, seasonal forecasts
should be probabilistic [10]. Nevertheless, uncertain forecasts can bring some benefits compared to
the traditional operation used in a business-as-usual scenario. In this context, this paper aims to
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analyze the added value that seasonal forecasting information with the current skill can bring to a CS
with a high potential in the hydropower sector. Forecast performance is obviously key to the value
of the service, and it is known that this performance is not yet high enough in Mediterranean areas.
In this case, we will study seasonal forecast river flow data (as the main input of SHYMAT) applied
at the local scale in the pilot area. Seasonal forecasting studies have focused on climate variables,
especially precipitation and temperature, which have been regionally assessed [11–15]. Data outputs
from global climate models (GCMs) can be also used as inputs to rainfall–runoff models to forecast
river flow [16,17], which yields longer predictability time windows than climate variables [18,19].
This work planned to analyze the performance of the main input of the service which, combined with
local operation data, is translated in seasonal river flow forecasts providing value for energy users
(i.e., operability of the hydropower plant, energy production or environmental restrictions compliance).
The performance will be shown through an evaluation of the forecast reliability and sharpness in
order to show potential endusers that traditional operation can be improved through the use of a CS
providing seasonal forecast information.

This paper is organized as follows: Section 2 introduces the methodology carried out for the service
assessment, including a pilot application description, the data and models used, and a description
of the data analysis. Section 3 presents the main results of the downscaling methodology and the
evaluation of seasonal forecasts against historical data; Section 4 contains a discussion of the findings
and implications of the main results; and Section 5 is the conclusions.

2. Materials and Methods

2.1. Pilot Application

The chosen study area is a three RoR system in the Poqueira River basin (southern Spain)
(Figure 1). The RoR pilot system consists of three small consecutive hydroelectric plants belonging to a
leading company in the Spanish energy sector, with a combined generation capacity between 10 and
12 megawatts. The study area is divided into three catchments of interest for the user. These three
catchments define three different points of water uptake for the hydropower production. The Poqueira
River basin is located within the Sierra Nevada Mountain Range, which is a national park and biosphere
reserve. This explains the special importance of carrying out an adequate management of water
resources in strict compliance with environmental regulations. It is an alpine/Mediterranean climate
region with a highly variable rainfall regime. Annual cumulative values range from 1000 mm in wet
years to 200 mm in dry years [20]. Snow appears recurrently at altitudes above 1000 m a.s.l. and is more
persistent at altitudes above 2500 m a.s.l. from November to May. Snow cover is subject to several
accumulation–ablation cycles during the snow season [21]. The average annual area of fractional
snow cover was 0.21 m2

·m−2 between 2000 and 2013, and ranged from 0.9 to 0.16 m2
·m−2 in wet/cold

and dry/hot years, respectively, with an average standard deviation of 0.23 m2
·m−2 [22]. The spatial

distribution of snow cover is very heterogeneous over the years and very difficult to predict. Therefore,
this pilot area is a perfect candidate to apply and analyze the potential of the proposed CS.

The use of seasonal inflow forecasts in the pilot area combined with the knowledge of the water
availability in terms of snow volume (the hydrological state of the contributing basin to the RoR plants)
will allow managers to plan the energy production in the next six months. Thus, although SHYMAT
provides data on meteorological and hydrological variables at the basin scale, this work focuses on
river inflows, as indicators of water availability, in the pilot RoR system. In this regard, historical
river inflow measurements, considered by endusers as useful information and with which they are
familiar in their daily work, are displayed by the CS. In addition, river inflow forecasts for the next
six months at a monthly time resolution, are presented as a first output in order to estimate other
additional outputs of the tool, such as:
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• The operability of the plant according to the production and non-production periods, which is
useful for planning maintenance tasks;

• The turbine discharge, the minimum flow that must be released from a plant in order to meet
environmental water requirements, and the spill. Knowledge about potential spill informs
hydropower managers on (a) the need to tune up the machines and increase the capacity of the
plant in order to take advantage of the excess discharges coming from snowmelt in a short time
period, or (b) the need to install new turbines in the plant in a long period if spilling is frequent;

• An estimation of the energy production given the predicted discharge.

A more detailed description of SHYMAT outputs is presented in Contreras et al. [5] and an
overview of the tool is provided in the Appendix A (Figure A1) of this paper, but the aforementioned
gives an idea about how important it is for pilot users to have a reliable forecast of river inflows.
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Figure 1. Location of the Poqueira River basin in southern Spain and the three run of river (RoR)
plants system in the pilot area. The sub-basin where seasonal forecast data are produced and
the sub-basins defining the three different points of water uptake for the hydropower production
(SHYMAT (small hydropower management and assessment tool) sub-basins) are also presented
(from Contreras et al. [5]).

2.2. Data Sources

Three different data sources were used in this work, including past observations and seasonal
forecast data, all of them provided in the collaborative framework of the CLARA project:

• On one side, seasonal forecasts of daily river flow data (which go up to a six-month prediction
horizon) are provided by the Swedish Meteorological and Hydrological Institute (SMHI).
The hydrological forecast information is produced by forcing the European Hydrological
Predictions for the Environment (E-HYPE) model with data from the European Centre for
Medium-Range Weather Forecasts (ECMWF) seasonal forecast systems (SEAS5 and its predecessor
System 4) [23,24]. ECMWF systems are based on global climate models, which since the
oceanic circulation is a major source of predictability in the seasonal scale, are based on coupled
ocean–atmosphere integrations [25]. E-HYPE is the European setup of the HYPE model, which
estimates hydrological variables on a daily time step at an average sub-basin resolution of 120
km2 [25,26]. For our pilot area, the seasonal forecasts of river flow data produced in a sub-basin of
527 km2 were used (Figure 1). Probabilistic forecasts are produced as an ensemble of members or
scenarios that present the range of future river flow possibilities. Although the CS is currently
operative with SEAS5 data which produces an ensemble of 51 members, in the service testing stage
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presented here, we used a previous ECMWF seasonal forecast, System 4, for which 15-member
hindcasts covering the period 1 January 1981–30 November 2015 for each calendar month and
up to six months ahead were available. The sub-basin where E-HYPE river flow forecasts are
produced does not perfectly match the contributing area to the pilot three RoR system (see
SHYMAT sub-basins in Figure 1). In this work, the raw seasonal forecasts were presented at
a monthly scale and statistically downscaled at the pilot local scale to match the temporal and
spatial scale suitable for this particular application, as detailed in the Section 2.3.

• On the other side, daily river flow averages simulated by forcing E-HYPE with HydroGFD
precipitation and temperature coming from reanalyses [27] (perfect run) are available for the
period 1 January 1981–31 December 2010.The E-HYPE performance in simulating river flow varies
in time and space, with low performance as well as a tendency to overestimate flows in southern
Spain [26]. The perfect run data were used in the downscaling step.

• Finally, the daily streamflow measurements for the period 1 October 1969–13 September 2018 in
the intake point of the Pampaneira plant (Figure 1), provided by the managers of the hydropower
system, give an adequate overview of the historical river inflow to the RoR system and its
variability. Data for the Poqueira plant are not available and the data for the Duque plant are
normally the same as in the Pampaneira plant, so the results of the analysis can be applied in
both plants.

These data series have been used for two different purposes and for each one the longest possible
study period according to data availability was considered. The first purpose is to show the high
variability of observed inflow data, available for the period 1 October 1969–13 September 2018. For this,
daily observed data were processed to compute the monthly inflow data and the results were presented
in a color map. The second purpose is the reliability evaluation for each month, for which the three
data sources were used. This purpose includes two tasks: (1) downscaling, using perfect run data and
streamflow measurements data, both available for the period 1 January 1981–31 December 2010,
and (2) the reliability and sharpness evaluation, using seasonal forecast data and streamflow
measurements data, both available for the period 1 January 1981–30 November 2015. Figure 2
shows a flowchart of the different methodologies and the data series used.
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downscaling, reliability and sharpness evaluation) and the data sources used, showing the study
periods available for each method.

2.3. Downscaling Approach of Seasonal Forecast Data for Local Application

The spatial and temporal scales of the seasonal data are not suitable to be directly applied in the
pilot area. Figure 1 shows on one side the location of the forecast data sub-basin, with an area around
527 km2, and on the other side, the contributing area to the pilot three RoR system (SHYMAT sub-basins)
estimated around 28.3 km2. Thus, the seasonal forecast data need to be statistically downscaled to the
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intake points of the hydropower plants, adjusting the statistical properties to mimic a higher resolution.
For that purpose, we used a quantile mapping method, usually used as a bias-correction method and
leading to generally good performance in comparison to other simple bias-correction methods [28,29].
Monthly river flow averages simulated with E-HYPE (perfect run) and river flow measured data for
the overlapping period from 1 January 1981 to 31 December 2010 were compared before and after
the application of the downscaling methodology. Downscaling parameters based on the quantile
mapping method (see Appendix B) were derived by comparing the distributions of E-HYPE-simulated
monthly river flows with monthly river flow measurements from 1981 to 2010. These parameters
were calculated independently for each month of the year and then used to adjust and downscale the
seasonal river flow forecasts month by month from 1981 to 2015.

Figure 3 shows the cumulative distribution function of seasonal forecast data and the measurements
for each month of the year, which were used to apply the quantile mapping downscaling and correction
methodology. Each peak and spell will receive different corrections, while remaining month dependent.
In this way, the melting is still corrected differently than the peak season as they occur in different months.
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Figure 3. Cumulative distribution functions of the reference simulation (perfect run PF) data and
measurements for each month of the year, for the correction period 1981–2010. The x axis represents
the average monthly river flow in m3/s.

2.4. Assessment of the Prediction through Seasonal Forecast Data and Historical Data

Seasonal forecasts constitute an added source of information that may help to narrow down the
operational options inferred from historical data sources. For these reasons, the assessment exercise
enhances the credibility and trust in the information provided by the service. Once seasonal forecast
data were downscaled, the evaluation of the prediction of water availability was considered for both
(1) the prediction from the CS based on the downscaled seasonal forecast data and (2) the method
traditionally used by the water and energy managers in their business as usual, based on an ensemble
of historical streamflow measurements [30,31]. In both cases, reliability and sharpness were evaluated.

For the CS prediction, the reliability and sharpness of the seasonal river flow forecasts for all
calendar months and the six horizon months were analyzed. Likewise, for traditional prediction,
the use of past observations of monthly streamflow measurements from the previous 10 years was
assumed. Pilot system managers normally use this historical data period for price market issues, as it
includes a sufficiently long period of years to cover at least one complete dry–wet cycle, but does not
use too old data that may incorporate long-term trends. For the CS prediction, 15 possible values of
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monthly river flow are provided for each month, while 10 possible values are considered in the case of
traditional prediction.

The methodology followed to assess forecast performance focuses on the sharpness and reliability
characteristics. While reliability traditionally characterizes the consistency between the forecast
distribution and the observation [11,32], sharpness characterizes forecast spread and is an attribute
of forecasts alone, with no regard to corresponding observations [33]. Forecast reliability and
sharpness are assessed simultaneously to follow the paradigm introduced by [32], which consists in
maximizing sharpness while guaranteeing reliability. Tailored versions of these metrics designed to
allow cross-service evaluation, and ease performance communication within services, were applied in
this paper [34]. In the case of simplified reliability (S), forecasts are compared with the river inflow
measurements by checking whether the observed data fall within the forecast range (defined by the
minimum and maximum forecast) estimated for each issue month Mi and target month Mt. If the
observation is between the minimum and maximum forecast value, S = 1, otherwise if the observation
is outside the forecast range, S = 0.

The reliability thus defined was presented as the percentage of times in which a posteriori
observations fell within the prediction range (Equation (1)):

Reliability[Mi, Mt] = mean (S[Mi, Mt])·100, (1)

where Mi is the issue month, Mt the target month and S the simplified reliability. When this metric is
close to 0, the forecast always misses the a posteriori observation, while values close to 100 indicate
that the forecast range always covers a posteriori observation.

For sharpness, the spread of the prediction is assessed as the ratio between the average forecast
range (sf) (i.e., the difference between the maximum and minimum forecast values averaged over
all forecasts of a given time period) and the average historical range for the same time period (sh)
(i.e., the difference between the maximum and minimum from all available years of the study period).
Forecast sharpness is then normalized by the historical sharpness, following Equations (2) and (3).,
so that values close to 0 indicate that the forecast is uncertain as the ensemble of historical values and
is therefore not considered confident, while the values close to 100 indicate a high confidence of the
forecast:

If sf[Mi, Mt] > sh[Mi, Mt]; Sharpness[Mi, Mt] = 0, (2)

Else; Sharpness[Mi, Mt] = 100 − sf[Mi, Mt] 100/sh[Mi, Mt]. (3)

Following the aforementioned methodology, the reliability and sharpness for each of the months
of the year and for the study period 01/01/1981–30/11/2015 are evaluated.

3. Results

3.1. Variability of Observed Inflow Data

Figure 4 shows a color map displaying the observed monthly inflow data for the study period
1969–2018 in the pilot sub-basin. The map highlights the high variability of river flow through the years,
which can vary from 1.1 to 11.6 hm3/month in wet years (1996–1997) and from 0.16 to 1.24 hm3/month
in dry years (1994–1995). Moreover, the allocation of high production periods also varies depending on
the year. As a clear example, if hydropower managers tried to predict the inflow to the plant for the year
1999 based on historical data, previous years (1996–1998) would induce a high error in the estimation,
as these were very wet years. As Figure 4 also shows, the months with high production can vary from
year to year: while in 1982, the higher monthly river flow took place around November–January, and
in 1986 the higher monthly river flow came about April–June.
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Figure 4. Observed monthly inflow data (hm3/month) for the hydrological period 1969–2018.
White spaces represent no-data due to sensor failure.

3.2. Downscaling of the Seasonal Forecast Data and Comparison with Measured Data

Before the application of downscaling methodology, the reference simulation of the seasonal
forecast and monthly river flow measurements were compared for the period in which both data series
overlap, 1 January 1981–31 December 2010. E-HYPE, due to its broad spatial resolution, does not
accurately capture the snow processes taking place in this area under the outstanding influence of
the high elevation of Sierra Nevada. Thus, snow precipitation is underestimated in favor of rainfall
and, consequently, river flow is overestimated in autumn and winter, as shown in Figure 5. Also,
spring snowmelt occurs at excessive rates in the model, so the summer river base flow shown by the
measurements is not accurately represented.
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Figure 5. Comparison between monthly average river flow of the reference simulation of European
Hydrological Predictions for the Environment (E-HYPE) (perfect run PR) and the measured data for
the overlapping period of 1981–2010, before and after the application of downscaling and correction
methodology to seasonal forecast data. In the lower plots, the details for a series of dry years (left) and
wet years (right).

The quantile mapping method allows to perform the downscaling from the simulated to the real
basin, and at the same time to adjust the deviations of the model, mainly linked to the snow simulation.
Even though the physical dynamics of the model are not corrected with this method, the resulting
series is very close to the actual measurements, as Figures 5 and 6 show. The mean value and the
magnitude of the peaks are totally corrected. Moreover, the inconsistencies found in the dynamic
operation of the model regarding the snowmelt timing or the performances during the dry years
appear to be much improved.
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3.3. Evaluation of the Reliability for Each Month

Figure 7 presents, for each month of the year, the reliability and sharpness of the forecasts
according to the traditional method and the CS for the six forecast horizons. According to the findings,
reliability is higher than sharpness in both prediction methods. The traditional method offers a high
reliability along the year. However, the reliability of CS prediction is equal or even higher than the
traditional method, even though there are significant differences in the different months and for the
different horizons. Particularly, seasonal forecast reliability is consistently higher than that of the
traditional method for most of the horizons throughout the year, except for the summer months. This
reduction in reliability is closely linked to the exceptionally high values of sharpness obtained in
July and August. In these months, the seasonal forecast narrows the range of the predicted values,
increasing the sharpness at the expense of reliability. For the rest of the months, the sharpness shows a
more erratic distribution over the years, with no clear trend associated with the seasons.
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Figure 7. Reliability and sharpness of the prediction for each month provided by the traditional method
(crosses), and the climate services (CS) (circles) for the six horizons, for the study period 1981–2015.

Figure 8 finally shows the numerical values of reliability and sharpness for each month averaged
for the six horizons. On one hand, in the case of traditional prediction, average reliability ranges
from 70% to 81%, while the CS prediction has an average reliability ranging from 79% to 86% (with
the exception of July and August, which show a reliability of 57% and 58%, respectively). These
findings mean that seasonal forecast shows an improvement with respect to traditional prediction
with an increase in reliability from 5% to 12% in most months, except in the case of the middle of
summer, November, January, and to a lesser extent, December. In these summer months, the seasonal
forecast reliability clearly decreases by 17%–19%, associated with an increase in sharpness of 30%–37%.
These two months show a very particular behavior distinct from the other months, and are thus
considered separately in the following analyses. On the other hand, the average sharpness for CS
prediction ranges from 15% to 45%, while the traditional prediction average sharpness ranges from
21% to 33%. The total averaged reliability and sharpness show a significant improvement when
seasonal forecast is used. If summer months with low reliability are ignored, the averaged reliability
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and sharpness improve steadily for seasonal forecast (82% and 30%) with respect to historically based
prediction (74% and 27%) resulting in sharpness and reliability gains of 3.2% and 7.4%, respectively.
It is worth mentioning the case of the spring months, where the sharpness increases by 10%–12%
consistently over all the years.
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Figure 8. Average values for the reliability and sharpness for each month throughout the different lead
times according to the Seasonal Forecast (SF) and the traditional method (Hist) (left), and the change of
CS prediction reliability and sharpness with respect to traditional prediction reliability and sharpness
(right), for the study period 1981–2015.

4. Discussion

The operation of the RoR plants should not be only based on historical local data, because of a
very high interannual variability of the river streamflow, even more significant in snow areas where
the snow cover and processes implied have a large influence on the quantity of water available in
the contributing basin. Predictions based on a limited number of previous years cannot predict
extreme years (dry or wet) leading to unreliable predictions. This is one of the reasons why energy
managers normally tend to consider a historical period of around ten years, which includes wet and dry
periods, but even so, it is still an estimation with a high degree of freedom due to the stochasticity of
hydrometeorological processes. Thus, seasonal forecast data based on climate model outputs provide
a more representative and thus more reliable information while narrowing down the wide window of
possibilities that historical data show, verifying the paradigm proposed by Gneiting et al. [32].

The results presented show higher reliability values for the seasonal forecast information than
for traditional prediction in most of months, except in the summer months. Thus, the use of seasonal
forecast information would improve the prediction of monthly river flow for most of the year, especially
in the spring months when seasonal forecast shows both high reliability and sharpness. It should be
noted that this differentiated performance for each month’s forecast is generally maintained regardless
of the lead time. Spring flows being one of the main resources used in the RoR plants associated with
mountain areas, these results show a very high potential benefit for this type of facility.

Predictions showing high sharpness (sharp predictions) imply high confidence, but do not
necessarily mean good predictions; as with reliability, sharpness is a necessary and useful but not
sufficient condition for high forecast quality [35]. This idea can be applied to the middle of summer,
in which a sharp forecast is not reliable. This fact can be due precisely to the higher sharpness shown,
because seasonal forecasts try to be excessively sharp, risking for it the reliability of the forecast which
implies unrealistic confidence [36]. This is related to the extreme dry summer conditions with almost
no precipitation, and hence, no spread in the forecasts of precipitation. As the large-scale hydrological
model underestimates the water reserves in the basin in early summer (in the form of soil moisture,
groundwater, and to a lesser extent for these dates, snow), low-spread input meteorological forecasts
do not manage to perturb the hydrological state either. In this way, the forecasted river flow appears
systematically underestimated (as can be seen in the July and August panels in Figure 3) and with very
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low spread and diminished reliability during the initial lead times of the forecasts made in the summer
months (Figure 7).

Although sharpness is not very high, in most cases the seasonal forecast presents a narrower
range of possible values than the traditional method and indeed, the total average sharpness found for
CS prediction is higher than that found for traditional prediction. In general, it could be said that for
equal or less reliability, the use of seasonal forecast information would be an advantage for managers.

To overcome reluctance in the renewable energy sector to apply innovative forecasting CS,
attention should be paid in creating confidence and showing the accuracy, skills and uncertainties of
the provided forecast. The findings of this work show valuable information that can be applied to the
implementation of the CS, taking service developers one step further in the future improvement of the
service and providing training for staff to cope with the challenging conditions that future climate
scenarios provide to the energy and water sectors. A methodology providing the skill of the forecast
information according to the reliability and sharpness values assigned to each month of the year can
be suggested as a way to give the user intuitive and accurate information. Thus, according to the
results, and if middle summer months (with low reliability) are ignored, the monthly seasonal forecast
would be associated with an average reliability around 79%–86%, and a sharpness of around 13%–45%,
both depending on the particular month. The outstanding improvement in both metrics achieved in
specific months like September, December or the spring months, allows us to glimpse a predictive
capacity able to suppose a substantial advantage for the planning of tasks related to the hydroelectric
development in rivers of mountainous areas.

This work shows the great influence of the quality of the series of measured data on the skill
of the results obtained. On one hand, the measurements are the ground truth that serve to evaluate
the success or failure of the forecast models. On the other hand, the measures are also fundamental
in the process of bias correction and therefore, determine a great part of the success or failure of the
evaluation of the results, beyond the skill of the seasonal forecast. In other words, the application of
a seasonal forecast with average or even poor skill over a basin can be enhanced if a good series of
measured data, of good length and consistent over time, is available.

Although downscaling methodologies improve the adjustment of seasonal forecast data to
measurements, a higher sharpness throughout the months is still needed to narrow the probability of
underperformance of the seasonal forecasts that feed the service. Future research must be focused
on the improvement of forecast information at the local scale by using both local historical data and
high-resolution model outputs with better performance when reproducing the local results.

5. Conclusions

The results confirm the high interannual variability of the river streamflow in the pilot area,
and therefore the high error that the predictions of inflow based on historical data can induce, also
due to the occurrence of extreme years. In this sense, the use of biased adjusted/downscaled seasonal
forecast in the pilot area would provide energy and water managers with more reliable prediction,
especially in the spring months, when seasonal forecast shows both high reliability and sharpness.
However, the seasonal forecast turned out to be unreliable for the summer months. In general, seasonal
forecast information would improve the prediction of observed river streamflow by 7.4% in reliability
and 3.2% in sharpness compared to the current operational forecast based on historical data. Finally,
seasonal forecasts constitute an added source of information that may help to narrow down the
operational options inferred from historical data sources.
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Abbreviations

The following abbreviations are used in this manuscript:

RoR run of river
CC climate change
EC European Commission
CS climate services
SHYMAT Small Hydropower Management and Assessment Tool
C3S Copernicus Climate Change Service
GCMs global climate models
SMHI Swedish Meteorological and Hydrological Institute
ECMWF European Centre for Medium-Range Weather Forecasts
E-HYPE European Hydrological Predictions for the Environment

Appendix A

SHYMAT is a scalable web user interface aimed at using climate data forecasting to foresee the operation
feasibility of run-of-river hydropower plants. The service offers a cloud web application with restricted access but
also an intuitive and friendly user interface (Figure A1): (1) a geolocation map which presents the user all the
hydropower systems included in the service; (2) a topological panel module which shows the elements of the
system (basins, rivers, load chambers, hydropower plants, and power grid) and their interactions; and (3) a water
availability and operation module which provides users with past, present and future information. This module
displays some graphs showing the seasonal forecast information at the monthly scale, whose skill is analyzed in
this paper.

1 
 

 

Figure A1. Example of some details of the web user interface of the climate service SHYMAT, showing
the topological panel, the geolocation map and graphs of the water availability and operation module.

The climate service provides endusers with the most up-to-date hydrological knowledge combining
measurements and modelling with the most advanced seasonal forecast that currently exists at the European level.
The service supports managers to anticipate: (1) high production periods and shutdown periods, for maintenance
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and repair tasks planning; (2) the possibility of compliance with environmental river flow restrictions; (3) the
spilling of water, giving managers the opportunity to quickly tune up additional turbines; (4) energy production,
clearly valuable information for market issues. These opportunities provide hydropower managers with potential
benefits conditioned by an improvement in the accuracy of the seasonal forecast.

SHYMAT follows an access provision business model, covering new geographical areas in Spain and Europe
thanks to its scalable software architecture. The service uses multi-product revenue-generation opportunities,
including local implementation, customization and maintenance.

Appendix B

Downscaling of the seasonal forecast of river flow data has been based on the quantile mapping method.
Quantile mapping consists in correcting the values depending on their location in the monthly distribution.
It applies a different correction coefficient to all the values within one month, depending on their frequency
of occurrence, i.e., low values and high values are corrected in different ways. The correction coefficients are
estimated independently for each month of the year and each lead time.

In this work, the correction coefficients are the same regardless of the member corrected. A bias correction
can be applied at different time steps (daily values, weekly values, monthly values) and calibrated at different
frequencies (one correction for each week of the year, each month of the year). Here, the correction has been
applied at the monthly time step, and calibrated for each month of the year.

The correction coefficients were determined following the next steps for the variable of interest (river flow),
for each month of the year and each lead time:

1. Computation of the empirical distribution of all the observed river flow values for the month of interest Mi
for the calibration period (1981–2010).

2. Computation of the empirical distribution of all simulated river flow values for the reference simulation,
which is done for each month of interest.

3. Adjustment of a forecast value for the month of interest Mi at the lead of interest Mt:

• Identification of the frequency of occurrence of the forecast value p in the empirical simulation
distribution built for the month of interest Mi.

• Identification of the observed river flow value p* with the same frequency of occurrence in the empirical
observation distribution for month Mi.

• Replacement of the forecast value p by the observed value p* that has the same frequency of occurrence.

Formulations of the quantile mapping method can also be found in [37,38].
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