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1. INTRODUCTION

Because of their simplicity, box models have long been in

use to calculate the spreading of pollutants for longer peri=-
ods of time (e.g. Bolin, 1971, and Sjdberg et al., 1972).The
quality of the results from these models relies on good esti-
mates of the fluxes between the boxes. This demand is diffi-
cult to fulfil in complicated basins like the Baltic Sea.
There are normally only a few boxes in the horizontal dimen-
sion and the models are to a large extent concentrated on
vertical exchange. Often a steady state of the circulation is

assumed.

However, there is considerable horizontal variability in the
sea of both physical parameters like current or temperature
and chemical or biological parameters. This fact has been
particularly illustrated with the increased use of satellite
information. As regards the physical part the horizontal
variability shows itself in form of eddies, fronts and mean-
ders. These are particularly evident in satellite IR images,
where the isotherm pattern reflects the surface circulation
(Gidhagen, 1984).

The temporal variability of the currents is too great to
assume a steady state or mean seasonal circulation patterns.
It is responsible for a significant dispersion especially in
the upper layers. Measurements in the western Baltic Proper
(Kielmann et al.,1973 and Francke, 1981) show that current
spectra have peaks for periods similar to those of wind spec-
tra, i.e. in the order of days. It has also been shown that
the energy of the corresponding current fluctuations is an
order of magnitude larger than that of the seasonal mean
state, which in turn shows a large variation comparec¢ :o the

yearly mean state.

As a consequence, a realistic modelling of the spatial and
temporal variability of the currents becomes very important.

Depending on the biological or chemical process of interest



both the time and horizontal scales are different compared
with the physical part. This suggests that the dispersion
model is split up into one submodel describing the physical

part and another submodel for the the biochemical reactions.

CIRCULATION MODEL DIFFUSION MODEL
(BIOCHEMICAL REACTIONS
ADVECTION SEDIMENTATION)

L]

DISPERSION MODEL

However, if a Monte Carlo type of diffusion model is used,
there are reasons to split the model further by treating the
advective and diffusive parts of the transport separately.
Firstly it is computationally much easier not to solve the
full advection~diffusion equation at every time a new outlet
of pollutant tracers is studied, and calculations only have
to be performed in those areas where the tracers occur. Sec-
ondly it is an accepted way of modelling turbulent motion to
cut off the turbulence at a particular frequency and treat
the short fluctuations separately. This type of diffusion
model also has advantages in connection with biochemical

modelling.

By treating the tracers separately there is no possibility to
let them have any dynamical influence on the flow. Active

tracers like heat should be treated in a different way.

In principle the above-mentioned important effects of both
temporal and spatial variability can be included in a box
model. Then the resolution and computer demand is approxi-

mately the same as for a finite difference or finite element



circulation model, which is the alternative to the box model.

The main difference between the two is that in the box model
the flow must be prescribed whereas in the circulation model
the flow is calculated. The necessity to prescribe the flow
limits the utility of box models to water-bodies with uniform
flow conditions where only a relatively small number of boxes
are needed. An advantage is a highly reduced computer cost.
On the other hand only the relatively large~scale features
can be handled, and the temporal variability, which in the

model is coupled to the size of the boxes, is restricted.

The circulation model, once set up, can easily be adjusted to
cover most scales of interest. Small-scale turbulence is
accounted for by the diffusion model. The temporal variabili-
ty is automatically included by the necessarily high time
resolution in the circulation model. Therefore, in relation
to the object of the present study there are obvious advan-

tages with the circulation model approach.

Usually the time scale in biochemical modelling is several
orders of magnitude larger than the time step in the circu-
lation model. Therefore the computed currents have to be
averaged by applying some kind of filter. Because of the
often high energy peak near the inertial frequency it is

important how the averaging is done.

In this introductory discussion we have arrived at a basic
idea of how a dispersion model of the Baltic Sea should be
constructed. A similar technique has been used for oil drift
forcasts (Ambjbrn et al., 1981) and also in Lake Vdnern
(Bork, 1977). The main use of the model will be in connection
with dispersion studies on time scales from months to years.
The purpose of the present study is to formulate and test
such a model for a number of outlets in the Baltic Sea.
Details of the meteorological forcing and the circulation
model are found in Chapters 2 and 3. The diffusion model is

described in Chapter 4, and the linkage between the two sub-



models is described in Chapter 5. Finally results from three

applications are shown in Chapter 6.

2. METEOROLOGICAL FORCING

With the ambition to use an advanced circulation model and to
make dispersion studies on time scales of several years one
easily gets into difficulties. The computer demand for the
circulation model is still too high to run the model in real
time for several years. .One way to get around this is to
construct a typical year that contains the most probable
weather events. Most of the time variance should then be
contained in this year and the time variance from year to
year is regarded as of minor importance compared with the

variance within a year.

In choosing the typical year the weather statistics of the
last 50 years have been studied. Representative weather
events have been sorted out and the different events have
been chosen from the years 1978-82 studying daily weather
maps. In the selection process special attention has been
paid to the wind and the duration of typical events. To cover
the relatively changing weather it has been necessary to use
25-30 days, built up from 4-6 events, for each season. The
seasonal grouping is done because it is a natural time scale

both for the weather and the stratification in the sea.

The circulation model has then been run for every event and
the currents have been stored every sixth hour. In the selec-
tion of meteorological forcing, attention has also been paid
to the order in which the events usually occur. By repeating
them in that order it is then possible to obtain a full year.
Although it cannot be regarded as a true year it is not en-
tirely artificial and should rather be regarded as a climato-
logical year. As it does not contain all the variability that
occurs during a time scale of many years, it should be used

with care for such long time scales.



An overview of the meteorological forcing of this climatolog-
ical year is found in Appendix 3 and 4. A comparison of the
wind statistics from the selected periods with corresponding

values of a 20 years long period is found in Appendix 2.

The wind strength is in excellent agreement, while the wind
direction is more evenly distributed in the statistics for
the 20-~years period. The reason for this is that each of the
selected weather events represents a whole set of events
which are of the same type but differ in the exact trajectory

of e.g. the cyclone center.

During part of the year some areas in the Baltic Sea are ice-
covered. This is not a serious problem for the offshore parts
of the Baltic Proper but it should be taken into considera-

tion in connection with dispersion in the Gulf of Bothnia.

3. CIRCULATION MODEL

Modelling of the Baltic Sea started with sea level models,
e.g. the two-dimensional barotropic model by Uusitalo (1960).
Later both two- and three-dimensional circulation models with
different degrees of approximation appeared. The latest and
perhaps the most advanced is the model described in Kielmann
(1981), where also a recent review of Baltic Sea modelling is

provided.

The Kielmann model which has been chosen for the present
study is a time dependent and three-dimensional baroclinic
model especially developed for the Baltic Sea from Simons
model (Simons, 1973). The latter has been verified with great
success in both small and large lakes and also in a limited
part of the Baltic Sea (Simons, 1978). The horizontal resolu-
tion for the present application is 10 km and in the vertical
6 layers have been used, the thickness of which is given in
Table 1. The layer depths have been chosen to account both

for stratification and the dispersion effect caused by the



vertical current shear. The eddy viscosities (see Table 1)
are defined for every level and lie well within the range of
values observed in the Baltic Sea (see Voipio, 1981). Hori-
zontal eddy viscosity and eddy diffusivity have been set to
100 resp 10 m2s~!.

Table 1. Vertical eddy viscosity in m2s-1 for different
depths. The vertical eddy diffusivity is one hun-
dredth of the viscosity.

Depth (m) Spring Summer Autumn Winter
5 0.0100 0.0100 0.0100 0.0100

10 0.0050 0.0050 0.0050 0.0050

20 0.0020 0.0010 0.0020 0.0020

40 0.0020 0.0020 0.0020 0.0020

60 0.0005 0.0005 0.0005 0.0005

In the Baltic Sea the circulation is a synthesis of wind-
induced and thermohaline circulation, the latter caused by
seasonal cooling and warming, inflow of Kattegat water, and
river outfall. In this study the emphasis is on the effect of
the wind-induced currents. Its importance is readily under-
stood by the fact that the mean wind speed in the Baltic Sea
as estimated from Swedish coastal stations is 7 - 8 ms~! at
25 m above sea surface with a dominant direction from SW and

W.

An important mechanism besides wind stress is the direct
pressure force caused by the heterogeneous air pressure.
Autumn cooling and spring heating are simulated on a season
to season basis by specifying typical density profiles for

each season.

The circulation has been computed for every period that was

described in Chapter 2. Each simulation started with no cur-



rents and a horizontally uniform stratified density field.
Two days of adjustment proved to be enough for the currents

to accelerate to a reasonably true level in all layers.

The surface wind stress is computed at every grid point from
the geostrophic wind using the same method as in Kielmann,
1981. Originally one uses the six-hourly 150 km pressure
fields, which then are interpolated to the 10 km grid in the
circulation model. Between the six-hourly wind stress fields

linear interpolation is used.

Appendices 7 to 10 show the mean-field of the surface layer
for each season. The currents are weak during spring and
summer. During autumn and winter there is a dominance of

Ekman drift towards east and northeast.

The mean currents for each layer during the whole climatolog-
ical year are plotted in Appendices 11 to 16. The two upper
layers are very similar and dominated by Ekman drift (0.03 -
0.04 ms~!) towards east and northgoing coastal currents (0.05
- 0.10 ms~!). The pure Ekman drift is disturbed by large
eddies 1in some specific regions. Northeast of Bornholm, north
of Poland, the Gulf of Gdansk and Gotland and outside the
entrance to the Gulf of Finland there are deviations from the
Ekman drift. Both the Bothnian Sea and the Bothnian Bay have
anticyclonic eddies in the southern and cyclonic eddies in
the northern part. In layer 3 to 6 the circulation is gov-
erned by topography. The mean currents are weak (< 1 ms~1) in
the inner parts of the basin with the exception of the return
flow northwestwards from Poland and westwards from the Gulf
of Finland. The mean coastal currents are somewhat stronger

with maximum values of 4 - 5 ms—1l.



4. DIFFUSION MODEL

The diffusive transport of particles created by turbulence on
scales smaller than the grid-size (in the horizontal) and the
layer depth (in the vertical), is modelled by a Monte Carlo
technique. This means that the calculated turbulent part of
the particle velocity is related to the eddy diffusivity in a

physically correct way.

Horizontal diffusion
The turbulent velocity contribution in the two horizontal
directions is taken from a rectangular random distribution

with a maximum value of

o = o] =Y
At

where Kh is the horizontal eddy diffusivity and At the time
step between each Monte Carlo calculation, (Maier-Reimer,

1975).

The value of Kh= 10 m?s~! is in accordance with the result of
experiments with dye releases (Kullenberg et al., 1973). The
assumption of a constant and isotropic eddy diffusivity is
acceptable for most parts of the Baltic, but it is a less

satisfying description of the turbulence close to the shore.

Very close to the coast - within a couple of kilometres -

the restriction for a particle to cross the coastline in
practice implies a diminished turbulent velocity in the di-
rection perpendicular to the coast. This sometimes leads to a

gathering of particles close to the coast.



With the value of Ky mentioned above, the turbulent velocity
has a maximum of 0.13 ms~! in each component direction. This
velocity is of the same order as the advective velocities

taken from the circulation model.

Vertical diffusion

The vertical eddy diffusivity is depth dependent. The stron-
gest turbulence is normally found in the uppermost layers,
where the wind contributes to the turbulent energy. The ex-
change over a pycnocline is very limited, leading to a local

minimum of the eddy diffusivity.

The varying values of the eddy diffusivity in the vertical
cause some difficulties in the Monte Carlo approach. Passive
particles have a tendency to gather at the level of the smal-

lest diffusivity.

This problem has temporarily been solved by using a constant
eddy diffusivity - the value being representative for the
uppermost layers - from the surface to the bottom. Instead

of the diffusivity variation, "permeability" coefficients are
introduced at the levels of density jumps. The consequence of
this approach is that the vertical distribution within each
layer is correctly modelled only in the uppermost layers.
Between the layers, the "permeability" coefficients can re-
strict the penetration of particles. The degree of restric-
tion between each layer reflects the local strength of the

stratification.

The turbulent contribution to the vertical velocity is model-
led by:

| /6KV
w'l = Y

At

The value of the vertical eddy diffusivity KV depends on the

characteristic windspeed for each season:



PERIOD DEPTH TO FIRST DENSITY Kv(mzs‘l)
DISCONTINUITY (m)

spring 60 0.010
summer : 20 0.002
fall 40 0.018
winter 60 0.018

This gives turbulent velocities up to 0.0055 ms—1, which is
considerably higher than the vertical velocities simulated by

the circulation model.

The density discontinuities correspond to those prescribed in
the circulation model. The probability of a particle penetra-
ting a pycnocline has been parameterized from the Munk-~Ander-
son formula for quantifying the eddy diffusivity variation
(Munk & Anderson, 1948):

K, = Ag(L + 3.33 « Ri)"1.S

where A, is a function depending on the wind-forcing and

Ap Az
p (Au

The parenthesis (1 + 3.33 « Ri)~l.% can be interpreted as a
measure of the exchange decrease over a pycnocline, suggest-

ing the definition of a "permeability" coefficient:

P,= 1~ (1 +3.33 « Ri)7L.S

10



The different values of the Richardson number give values of

P_. as follows:

L
Spring Summer Fall Winter
P (5m) 0.0 0.0 0.0 0.0
P, (10m) 0.0 0.0 0.0 0.0
P (20m) 0.0 0.9987 | 0.0 0.0
P, (40m) 0.0 0.9983 | 0.9931 | 0.0
P, (60m) 0.9997 | 0.9997 | 0.9997 | 0.9997
5. DISPERSION MODEL

In the dispersion model, particles are released into the
Baltic from point sources (periodic or continuous release) or
from a homogeneously distributed source (like atmospheric
fall-out). The particles are then affected by the advective
velocities simulated in the circulation model and by the
turbulent velocities calculated in the diffusion model. Both
the advective and the turbulent part of the movement are

three-dimensional.

In the calculations reported here, the particles are released
from a point source at a rate of one particle every third
hour. The particles act like passive tracers of the water
movement. The calculations in the dispersion model (with a

time step of one hour) proceed as follows:

1



First the particle is horizontally displaced. The advective
velocities are given every sixth hour, which means that they
are constant during six time steps in the dispersion model.
The advective velocity in the nearest gridpoint is used,
except close to the coast. By definition the coastline con-
sists of gridpoints with zero velocities, so the particles
close to the shore use the nearest gridpoint situated ten

kilometres out from the coastline.

The sum of the advective velocity and the turbulent velocity
from the Monte Carlo calculation defines the total horizontal

movement of the particle during one time step.

Thus:
xt = Xt—l + At(Uadv + Uturb)
Yo = Yot 8e(Voge * Veurp)

The particles are not allowed to penetrate the coastline, but
they are affected by the coast-parallel component. The coast-

line is defined separately for the six layers.

Thereafter the vertical movement is performed. The nearest
gridpoint of vertical advective velocity is looked for, and
to that velocity the turbulent part is added. If the particle
seems about to penetrate a pycnocline, the "permeability"
coefficient gives the probability of this actually happening.
The local bottom depth also restricts the vertical movement

of the particles. For the vertical deplacement we have:

z2, =2 + At (W

t t-1 adv + wturb)

12



6. APPLICATIONS

The dispersion model has been applied to three different
outlets. Each simulation has lasted one year and synoptic
spreading patterns will with some exceptions be shown after
every season. As earlier pointed out both the temporal and
spatial variability have a great effect on the spreading and
it is therefore difficult to draw any conc;usions as to how
the particles have moved between the different synoptic situ-
ations. The points of release have been 5 km out from the
coastline and at 1 m ¢ »>th. Although all outlets are close to
river outlets, they are not considered in this version of the
model. If included, it is probable‘that the spreading picture

close to the rivers would be different.

6.1 Outlet: Umed (Bothnian Sea)

This simulation started at the beginning of spring and the
first picture shows the spreading pattern after summer (Ap-
pendices 17 to 18). During spring the particles were effec-
tively mixed from the surface down to the halocline and the
large differences between the patterns in Appendix 17 (0 - 5
m) and 18 (20 -40 m) reflect the effect of the summer strati-
fication. The more pronounced vertical variability of the
current and the effect of the thermocline on the vertical
mixing are clearly demonstrated. In the surface layer some
particles have escaped into the Bothnian Bay and there is a
marked concentration along the coast southwards from the
outlet. The latter is evidently an effect of a combination of
wind drift towards the coastline and a smaller horizontal
diffusion close to the coast, which was explained earlier in
Chapter 4. During autumn there is a general increase of the
currents and the upper 40 meters are well-mixed. The result
is a rather uniform distribution of particles (Appendix 19)
in the Bothnian Bay and the northern part of the Bothnian

Sea.

After one year (Appendices 20 to 25) the whole Gulf of

Bothnia is covered by particles and some have even spread

13



southwards through the Aland Sea. The patterns in the upper 5
layers do not differ very much and in general there is a
lower concentration in the central part of the Bothnian Sea.
In synoptic as well as in mean current fields there is a
well-defined cyclonic eddy outside the outlet. The effect of
this is clearly seen in the comparatively low concentration
in that region. Instead it helps to concentrate particles in
the gulf south-west of the outlet where the southward trans-
port caused by the eddy often meets a northward-going cur-

rent.

6.2 Outlet: Givle (Bothnian Sea)

This simulation also started in the beginning of spring. In
the surface layer (Appendix 26) the particles are trapped
along the coast both southeastwards and northwards from the
outlet. 1In layer 4 (20 - 40 m) most particles seem to be
found along a deeper channel eastward from the outlet (Ap-

pendix 27).

The stronger winds in autumn then spread out the particles
rather evenly and they have not yet reached the eastern coast
(Appendix 28). The winter pictures (Appendices 29 to 34)
have, like the Umed case, an almost clean spot in the centre
of the Bothnian Sea. Now the highest concentration is found
along the Swedish coast but with no particular area of high
concentration. Only one particle is found in the Bothnian

Bay while up to 50 particles have entered the Baltic Proper.

6.3 Outlet: Gulf of Gdansk (Baltic Proper)

To illustrate the importance of the summer stratification
better this simulation started in the beginning of autumn.
There is a surprisingly strong westward transport of parti-
cles towards the Swedish coast (see Appendix 35). Looking at
the mean (Appendix 11) as well as synoptic current maps the

westward transport is explained by the high rate of westgoing

14



currents along the Stolpe Channel. The typical presence of an
anti-cyclonic eddy in the Gulf of Gdansk makes many of the
surface particles escape out into the open sea at the western
part of the gulf. In lower layers (Appendix 36) there is a
more effective spreading and the whole southern and south-

eastern part of the Baltic Proper has been affected.

During winter (Appendices 37 to 38) the northward transport
dominates and the concentration is high all along the Lithua-
nian coast. The Gulf of Gdansk again gets rather affected

during spring (Appendices 39 to 40).

The final pictures show the summer situation (Appendices 41
to 46) when the western regions inside Oland and Gotland also
contain particles. However the overall picture shows that
most particles in the upper layers are trapped near the coast
close to the outlet. Below the thermocline there is a more
homogeneous picture and the area of distribution is limited

to the southern and eastern part of the Baltic Proper.

7. CONCLUSIONS

The first steps towards a practicable long-time dispersion

model of the Baltic are formulated.

The dispersion model is applied to discharges of passive,
individual particles at three different coastal localities.
The model takes many known effects into account, e.g. the
variable wind-forcing in space and time, the existence of
meso-scale eddies at certain places after a certain wind-
forcing, dispersion created by vertical velocity shears and a
variable stratification limiting the vertical exchange. The
particle distribution seems to be reasonable and the above-

mentioned factors seem to have acted in a realistic way.

15



Although the model represents a major step forward in disper-
sion modelling important further developments are still need-
ed. What comes first is to verify the two submodels. The
circulation model needs to be verified primarily against
current measurements. The diffusion model is very sensitive
to the diffusivity parameters which describe the turbulent
motion on the scales smaller than 10 kilometres. Current
measurements and dye spread experiments in the Baltic can be
used to find the optimal values of the diffusivity para-

meters.

The model is easily applied to the spreading of other sub-
stances than passive tracers, making allowance for various
physical, chemical and biological processes to enter, e.g.
sedimentation and plancton uptake. The circulation model must
include the effect of the estuarine circulation if the dis-
persion model is to be used for time-scales of tens of years

and more.

16
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Appendix 1

Weather type D=vre
WINTER
(Jan 1 - Mar 31)
1982 Jan 8-15 W - NW 8
1982 Feb 9-15 SW - S 7
1979 Mar 7-12 S - SE ()
1980 Mar 14-19 E -NE 6
1979 Jan 2-4 ‘ N 3
SPRING
(Apr 1 - Jun 15)
1982 Apr 1-5 NW 5
1979 May 12-20 SW 9
1979 May 21-26 SE 6
1978 May 6-13 NE 8
1978 Apr 22-23 variable 2
SUMMER
(Jun 16 - Sep 30)
1978 Aug 8-14 NW & variable
1979 Aug 14-19 SE
1982 Aug 17-28 SwW 12
1979 Jul 5-9 N - NE
AUTUMN
(Oct 1 - Dec 31)
1982 Nov 2-~7 W - NW ()
1982 Nov 8-18 SW - S 11
1982 Oct 1-10 S - SE 10
1979 Oct 24 variable 1
1978 Dec 23-25 E - NE 3

Selected weather periods which together constitute a climato-

logical year.



Appendix 2

HOLMOGADD

Strength (ms™!)

calm
Selection 0.9
1961-80 1.9
Direction

calm
Selection 0.9
1961-80 1.9
UNGSKAR

Strength (ms=—1)

calm
Selection 0.7
1973-80 1.7
Direction

calm
Selection 0.7
1973-80 1.7

&

~

1

-2

5.2
7.6

[e) IS,

O b

3-8 9 -14 15

6l.7 23.5 3.5

62.1 21.8 3.3
SE S SW W NwW N
6.0 34.7 10.0 13.4 3.0 22.0
9.5 18.4 17.3 9.7 11.1 14.3
3-8 9 -14 15

51.7 36.7 5.7

52.2 32.9 5.6
SE S SW W NwW N
4.1 15.8 11.7 27.7 2.6 10.0
8.0 8.2 19.9 19.4 10.5 8.0

Comparison between statistics for the climatological year and

data from 1961 - 1980 (Holmogadd,
tic Sea) and from 1973 - 1980 (Ungskar,

Baltic Sea).

representing northern Bal-

representing southern



Appendix 3

WINTER
Jan 1982 Feb 1962 Mar1979 Mar 1980 Jin9m
BOWNRBBUE  90NRBUS 78910112 L15I6171819 2 34

iz, |
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e
=AY
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&
&
4

SPRING
Apr1982 May 1979 May 1978 Apr1978
12345 121314615 16 17 18 19 20 21 2223 2L 25 26 678910113 22

i )

Wind vectors from measurements at Holmdgadd (upper series)

and Ungskdr (lower series) representing northern and

southern Baltic Sea respectively. The vectors point in the
direction of the wind. Scale: 1 cm = 10 ms~!l.



Appendix 4

SUMMER
Aug 198 Aug 1979 Aug 1982 Jul 979
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(0-5 m).
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(0-5 m).
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Whole year: computed mean currents for layer 2 (5-10 m).
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Whole year: computed mean currents for layer 3 (10-20 m).
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Whole year: computed mean currents for layer 4 (20-40 m).
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Whole year: computed mean currents for layer 6 (60 m to

bottom) .
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Outlet: Umed. Particle distribution in layer 1 (0-5 m) after

autumn, 10 % of total number.
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winter, 10 % of total number.
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Outlet: Umed. Particle distribution in layer 2 (5-10 m) after

winter, 9 % of total number.
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Outlet: Umed. Particle distribution in layer 3 (10-20 m)

after winter, 18 % of total number.
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Outlet: Umea. Particle distribution in layer 4 (20-40 m)

after winter, 32 % of total number.



Appendix 24

gobg
0000
HOB. R 8008008“8000088 EBUBE
Hmﬁggﬁogooooogaowwﬂ“” g
BO UOBU
i oofio0el
BOHOBUOBB . BEB
: g

Emaooooguaﬁ g

00
BOOBBOOBUBUUUUQ E 808
QB Eooo E
poo00o HUBOH ‘ B“O
EOUUUUBBBBBOB UHUBOOBUOOBBUBU ﬁoo
“Bo0008" EEOOOOBE

Outlet: Umed. Particle distribution in layer 5 (40-60 m)

after winter, 29 % of total number.
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Outlet: Gdvle. Particle distribution in layer 1 (0-5 m) after

summer, 22 % of total number.
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Outlet: Gdvle. Particle distribution in layer 4 (20-40 m)

after summer, 17 % of total number.
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Outlet: Gdvle. Particle distribution in layer 1 (0-5 m) after

autumn, 9 % of totél number.
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Outlet: Gdvle. Particle distribution in layer 1 (0-5 m) after

winter, 9 % of total number.
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Outlet: Gdvle. Particle distribution in layer 2 (5-10 m)

after winter, 9 % of total number.
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Outlet: Givle. Particle distribution in layer 3 (10-20 m)

after winter, 19 % of total number.
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Outlet: Gavle. Particle distribution in layer 4 (20-40 m)

after winter, 36 % of total number.
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Outlet: G&dvle. Particle distribution in layer 5 (40-60 m)

after winter, 25 % of total number.
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Outlet: Gdvle. Particle distribution in layer 6 (60 m to

bottom) after winter, 1 % of total number.



Appendix 35

EDDBDUOUOUBOB

00
'

g '
ﬁﬁ HUBB
BBUDB HB
o]
R
FF
HB
QB E
BO
UBUB g BOBOUUBG gUU
e, - g
HO OBBOBH OOOUUHOOgoogogoooﬁ EOUBUO
BH UOOQOOUHDOOBODDUOBQ
gﬁ' Hoaoﬂog
B 0 ga E
g8 B84, bo
g wggsggoﬁ g
E L 00

o i

|

5080888

BUCBBHHB
i

BE BBBEB d :
ol
iy f B

H .
Eéoggooooooooﬁ BT Y ) ' .
ol
ﬁOBOBOUOBDOOOBEQéJ‘ ’§§OUO‘

doondol

HGUOOB
i

g
BOODBBOUUOH
B

Hag

DOBBOOOOBUUOBOODBU

Outlet: Gulf of Gdansk. Particle distribution in layer 1

(0-5 m) after autumn, 15 % of total number.
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Outlet: Gulf of Gdansk. Particle distribution in layer 4
(20-40 m) after autumn, 27 % of total number.
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Outlet: Gulf of Gdansk. Particle distribution in layer 1

(0-5 m) after winter, 14 % of total number.
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Outlet: Gulf of Gdansk. Particle distribution in layer 4
(20-40 m) after winter, 34 % of total number.
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Outlet: Gulf of Gdansk. Particle distribution in layer 1
(0-5 m) after spring, 12 % of total number.
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Outlet: Gulf of Gdansk. Particle distribution in layer 4
(20-40 m) after spring, 31 % of total number.



Appendix 41

BUBU
DBUBUB 08 E UBOBUBOUO EOUBOOOOOH
BH HOBBOSH Hoooooﬁ QUUBUOOB BUUBDOOO
0 00800808000 ﬁoo
EBH OBUOO§OOUBOOOBOUUDDBH
' ﬁ 0808 '

i
BBUUQ UBBEOOE E
BOODOOH

ﬁ 3 b
E ol ‘- EBHE;;gB BOBEE
BHE' EB BB B :

1 OE
il

EOBUBBB

- goo

oo - ‘

EOQ BEOOOOODUOE ) s “
i : a g . . . :

ﬁooooﬁg o8 HO@ ‘Booogé ‘ i@?
i e g
BOBB HG@BB 8000800080 dﬁUoool
- "Hoooo

Outlet: Gulf of Gdansk. Particle distribution in layer 1

(0-5 m) after summer, 17 % of total number.
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Outlet: Gulf of Gdansk. Particle distribution in layer 2

(5-10 m) after summer, 16 % of total number.
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Outlet: Gulf of Gdansk. Particle distribution in layer 3

(10-20 m) after summer, 32 % of total number.
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Qutlet: Gulf of Gdansk. Particle distribution in layer 4

20-40 m) after summer, 21 % of total number.
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Outlet: Gulf of Gdansk. Particle distribution in layer 5
(40-60 m) after summer, 13 % of total number.
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Outlet: Gulf of Gdansk. Particle distribution in layer 6
(60 m to bottom) after summer, 1 % of total number.
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Norrkdping 1980

Buch, Erik

Turbulent mixing and particle distribution investigations
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A forest evapotranspiration model using synoptic data
Norrkoping 1982
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Narmada Basin in India

Norrkoping 1984

Omstedt, A
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Norrképing 1984

Gidhagen, L
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A model for pollution studies in the Baltic Sea
Norrkdping 1984



SMHI
HO

kuy/L/SCR

Nr

Nr

Nr

Nr

Nr

Nr

10

11

13

14

15

17

18

19

22

23

24

SMHI Rapporter, METEOROLOGI OCH KLIMATOLOGI (RMK)

Thompson, T, Udin, I, and Omstedt, A

Sea surface temperatures in waters surrounding Sweden
Stockholm 1974

Bodin, S
Development on an unsteady atmospheric boundary layer model.
Stockholm 1974

Moen, L

A multi-level quasi-geostrophic model for short range weather
predictions

Norrkdping 1975

Holmstrdm, I
Optimization of atmospheric models
Norrk&ping 1976

Collins, W G

A parameterization model for calculation of vertical fluxes
of momentum due to terrain induced gravity waves

Norrk&ping 1976

Nyberg, A
on transport of sulphur over the North Atlantic
Norrk&ping 1976

Lundgvist, J-E, and Udin, I

Ice accretion on ships with special emphasis on Baltic
conditions

Norrkdping 1977

Eriksson, B

Den dagliga och &arliga variationen av tewperatur,
och vindhastighet vid ndgra orter i sverige
Norrképing 1977

fuktighet

Holmstrom, I, and Stokes, J
Statistical forecasting of sea level changes in the Baltic
Norrkdpiny 1978

Omstedt, A, and Sahlberg, J

Some results from a joint Swedish-Finnish sea ice experi-
ment, March, 1977

Norrk&ping 1978

Haag, T

Byggnadsindustrins vdderbercende,
tagsekonomi, B-niva

Norrkdping 1978

seminarieuppsats i fére-

Eriksson, B

Vegetationsperioden i Sverige berdknad fridn temperatur-—
observationer

Norrkdping 1978

Bodin, §

En numerisk prognosmodell f&r det atmosfdriska grdnsskiktet
grundad p3a den turbulenta energiekvationen

Norrk8ping 1979

Eriksson, B
Temperaturfluktuationer under senaste 100 &ren
Norrkdping 1979

udin, I, och Mattisson, I

Havsis- och sndinformation ur datorbearbetade satellitdata
- en modellstudie

Norrkdping 1979

Eriksson, B
Statistisk analys av nederbdrdsdata.
Norrkdping 1979

Del I. Arealnederbord

Eriksson, B

Statistisk analys av nederbdrdsdata.
av mdnadsnederbdrd

Norrkdping 1980

bel II. Frekvensanalys

Eriksson, B

Arsmedelviarden (1931-60) av nederbord, avdunstning och
avrinning

Norrképing 1980

Omstedt, A
A sensitivity analysis of steady,
Norrképing 1980

free floating ice

Persson, C och Omstedt, G

En modell f&r berdkning av luftfbroreningars spridning och
deposition pd mesoskala

Norrk&ping 1980

Jansson, D

Studier av temperaturinversioner och vertikal vindskjuvning
vid Sundsvall-Hérnésands flgplats

Norrképing 1980

Sahlberg, J and Tdrnevik, H
A study of large scale cooling in the Bay of Bothnia
NorrkSping 1980

Ericson, K and Harsmar, P-0O
Boundary layer measurements at Klockrike. Oct.
Norrk&ping 1980

1977

Bringfelt, B

A comparison of forest evapotranspiration determined by some
independent methods

Norrk&ping 1980

Nr

Nr

Nr

Nr

Nr

Nr

26

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Bodin, S and Fredriksson, U
Uncertainty in wind forecasting for wind power networks
Norrkoping 1980

Eriksson, B
Graddagsstatistik for Sverige
Norrkoping 1980

Eriksson, B

Statistisk analys av nederbdrdsdata.
nederbdrdsserier

Norrkdping 1981

Del III. zoo—ariéa

Eriksson, B
Den "potentiella" evapotranspirationen i Sverige
NorrkSping 1981

Pershagen, H
Maximisnddjup i Sverige {perioden 1905-70}
Norrk8ping 1981

Lénngvist, O

Nederb&rdsstatistik med praktiska tilldmpningar
{Precipitation statistics with practical applications}
Norrk&ping 1981

Melgarejo, J W
Similarity theory and resistance laws for the atmospheric
boundary layer
Norrk&ping 1981

Liljas, E

Analys av moln och nederbdrd genom automatisk klassning av
AVHRR data

Norrkoping 1981

Ericson, K

Atmospheric Boundary layer Field Experiment in Sweden 1980,
GOTEX 11, part I

Norrkoping 1932

Schoeffler, P

Dissipation, dispersion and stability of numerical schemes
for advection and diffusion

Norrkoping 1982

Undén, P
The Swedish Limited Area Model (LAM).
Norrk8ping 1982

Part A. Formulation

Bringfelt, B
A forest evapotranspiration model using synoptic data
Norrk&ping 1982

Omstedt, G

Spridning av luftférorening frédn skorsten i konvektiva
grédnsskikt

Norrképing 1982

Tornevik, H

An aerobiological model for operational forecasts of pllen
concentration in th air

Norrkdping 1982

Eriksson, B
Data rdrande Sveriges temperaturklimat
Norrkdping 1982

Omstedt, G

An operational air pollution model using routine
meteorological data

Norrképing 1984

Persson, C and Funkgvist, L

Local scale plume model for nitrogen oxides - Model
description

Norrkdping 1984

Stefan Gollvik
Estimation of orographic precipitation by dynamical
interpretation of synoptic model data.






ISSN 0347- 7827





