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Abstract Recent technological advances in representation of processes in numerical climate models
have led to skillful predictions, which can consequently increase the confidence of hydrological
predictions and usability of hydroclimatic services. Given that many water‐related stakeholders are affected
by seasonal hydrological variations, there is a need to manage such variations to their advantage through
better understanding of the drivers that influence hydrological predictability. Here we analyze the seasonal
forecasts of streamflow volumes across about 35,400 basins in Europe, which lie along a strong gradient in
terms of climatology, scale, and hydrological regime. We then link the seasonal volumetric errors to various
physiographic‐hydroclimatic descriptors and meteorological biases in order to identify the key drivers
controlling predictability. Streamflow volumes over Europe are well predicted, yet with some geographic
and seasonal variability; however, the predictability deteriorates with increasing lead time particularly in the
winter months. Nevertheless, we show that the forecast quality is well correlated to a set of descriptors,
which vary depending on the initialization month. The forecast quality of seasonal streamflow volumes is
strongly dependent on the basin's hydrological regime, with limited predictability in relatively flashy basins.
On the contrary, snow and/or baseflow dominated regions with long recessions show high streamflow
predictability. Finally, climatology and precipitation forecast biases are also related to streamflow
predictability, highlighting the importance of developing robust bias adjustment methods. Overall, this
investigation shows that the seasonal streamflow predictability can be clustered, and hence regionalized,
based on a priori knowledge of local hydroclimatic conditions.

Plain Language Summary Hydrological information for the months ahead is of great value to
existing decision‐making practices, particularly to those affected by the vagaries of the climate and who
would benefit from better understanding and managing climate‐related risks. Currently, there is limited
knowledge of the factors controlling the quality of the seasonal streamflow forecasts. We analyze such
forecasts over Europe and link their predictability to basin descriptors and meteorological biases. This
allows the identification of the key drivers along a strong hydroclimatic gradient. The seasonal
streamflow predictability varies geographically and seasonally with acceptable values for the first lead
months. Predictability deteriorates with increasing lead time particularly in the winter months. The
hydrological regime is strongly linked to the forecast quality, with quickly reacting basins showing low
values. Basin climatology and precipitation forecast biases are also related to the predictability of
streamflow.

1. Introduction

Seasonal forecasts hold the potential for being of great value for a wide range of stakeholders who are
affected by the vagaries of the climate and who would benefit from understanding and better managing
climate‐related risks (Bruno Soares et al., 2017; Contreras et al., 2020; Doblas‐Reyes et al., 2013). In
Europe, there has been relatively little uptake and use of seasonal forecasts by users for decision‐making,
compared to other parts of the world, that is, Africa, the United States, and Australia (Bennett et al., 2017;
Hansen et al., 2011; Mendoza et al., 2017), probably due to the relatively limited skill of seasonal meteoro-
logical forecasts in Europe (Arnal et al., 2018; Giuliani et al., 2020; Greuell et al., 2018; Harrigan et al., 2018;
Wanders et al., 2019). However, recent advances in our understanding and forecasting of climate have
resulted in skillful and useful meteorological predictions, which can consequently increase the confidence
of hydrological predictions and improve awareness and preparedness from a user perspective (Bruno
Soares & Dessai, 2016; Buontempo et al., 2018; Hewitt et al., 2017).
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The accuracy of seasonal hydrological forecasts is subject to multiple sources of error/uncertainty, which are
present in the various components of the production chain, that is, meteorological forecasts, bias adjust-
ment, hydrological model(s) and setup, and model initialization (Crochemore et al., 2016; Demirel
et al., 2013; Thiboult et al., 2016). Consequently, to improve hydrological forecasts, each component has
to be evaluated to assess its relative contribution to the overall forecasting accuracy (Arnal et al., 2017;
Wood & Lettenmaier, 2008; Yossef et al., 2017). Even though the large heterogeneity in the hydroclimatic
patterns and physiographic descriptors leads to a strong spatiotemporal variability of the hydrological pre-
dictability, the understanding of the key drivers (i.e., climatological conditions, human impacts, hydrologi-
cal regimes, topography, etc.) influencing hydrological predictability is still limited.

The majority of seasonal hydrological impact modeling efforts has commonly been conducted in only one or
a limited number of basins limiting the need for an increased understanding of large systems, which are, for
example, heavily influenced by human activities (Apel et al., 2018; Foster et al., 2018; Meißner et al., 2017;
Yuan et al., 2016). Large‐scale (i.e., continental) multibasin modeling can complement the “deep” knowl-
edge from basin‐based modeling, enhance process understanding, increase robustness of generalizations,
and facilitate classification of basin behavior and prediction (Gudmundsson et al., 2012; Kumar et al., 2013;
Pechlivanidis & Arheimer, 2015). Specifically, for seasonal hydrological forecasting, multibasin modeling
can support better understanding of prediction uncertainty and go beyond sensitivities related to initial
hydrological conditions and meteorological forecasts that regional investigations can only target (Lavers
et al., 2020; Wood & Lettenmaier, 2008). This type of modeling has the potential to cross regional and inter-
national boundaries, while analysis over a number of basins allows the consideration of different geophysi-
cal and climatic zones and hydrological regimes (Gupta et al., 2014; Krysanova et al., 2017); hence, it can
provide a deeper understanding of the underlying sensitivities in forecast quality. Such modeling can also
advance hydrological science, since it founds a numerical background for comparative hydrology. The use
of a large sample of stations, particularly when analyses are conducted at the continental scale, can also
allow for exploration of emerging patterns and facilitate the testing of sensitivities for basins with a wide
range of environmental conditions (Blöschl et al., 2013; Pechlivanidis et al., 2017, 2018; Rakovec et al., 2016;
Samaniego et al., 2017).

In natural river systems, streamflow fluctuations are driven both by discharges from the basin's water
storages (i.e., groundwater, snowpack, soil moisture, and channel network) and by meteorological forcings.
Efforts have consequently been made to apportion the role of initial hydrological conditions and meteorolo-
gical forecasts in seasonal streamflow prediction, resulting in a number of uncertainty attribution frame-
works. Among others, the Ensemble Streamflow Prediction and reverse Ensemble Streamflow Prediction
framework, which was proposed by Wood and Lettenmaier (2008), has received high attention. This frame-
work was later extended to allow blending of the two sources of seasonal streamflow forecast skill and assess
skill elasticity (Arnal et al., 2017; Wood et al., 2016). In various investigations, these frameworks could iden-
tify the primary contributors to seasonal hydrological skill and uncertainties (e.g., Shukla &
Lettenmaier, 2011; Staudinger & Seibert, 2014; Yossef et al., 2013; Yuan et al., 2016); however, there has been
limited provision of links of streamflow predictability to the physical drivers hidden behind initial conditions
and meteorological forcings.

Understanding processes in large river systems is challenging, given that physical properties (e.g., vegetation
and soil type) generally exhibit high spatial variability, which consequently result in significant differences
in system behavior and predictability (Kuentz et al., 2017). As expected, this spatial heterogeneity introduces
further uncertainty on the categorization of important drivers that influence the predictive hydrological
quality. In addition, large river basins are often strongly influenced by human activities (e.g., irrigation,
hydropower production, and groundwater use) for which information can be difficult to attain and therefore
rarely described in hydrological model processes; hence, introducing additional uncertainty regarding pro-
cess understanding and description (Andersson et al., 2015; Nazemi & Wheater, 2015).

Here, wemake a step forward by gaining insights in spatial patterns of hydrological predictability at the large
scale and link this to the descriptors of the basin systems. We pose the following scientific questions: (1)
What are the limits of predictability for hydrological forecasting systems? And (2) what are the drivers affecting
the accuracy of the seasonal hydrological forecasts? To address these questions, we (a) assess the hydrological
forecasting performance across Europe's hydroclimatic gradient for all initialization months and different
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lead times (up to 7 months), (b) detect relationships between hydrological forecasting performance and
physiographic‐hydrological‐climatic descriptors to understand the key controls of poor/good accuracy along
the gradient, and (c) rank these drivers based on their potential to categorize/describe the forecasting accu-
racy for different initialization months. The paper is structured as follows. Section 2 presents the hydrologi-
cal model setup, data used, and methodology. Section 3 presents the results, followed by a discussion in
section 4. Finally, section 5 states the conclusions.

2. Model, Data, and Methods
2.1. Hydrological Model Description

HYPE (HYdrological Predictions for the Environment) is a continuous semidistributed process‐basedmodel,
which simulates components of the water cycle (i.e., snow accumulation and melting, evapotranspiration,
soil moisture, streamflow generation, groundwater recharge, and routing through rivers and lakes) at a daily
time step (Lindström et al., 2010). HYPE simulates the water flow paths in soil, which is divided into three
layers with a fluctuating groundwater table. Parameters are linked to physiographical (soil type and depths
and vegetation) characteristics in the landscape. Lakes receive the local runoff and the streamflow from
upstream subbasins, while the outflow from a lake is determined by a rating curve. For reservoirs, a simple
regulation scheme can be used, in which the outflow is constant or follows a seasonal function for water
levels above a threshold. A rating curve for the spillways can be used when the reservoir is full. Irrigation
is simulated based on crop water demands calculated either with the FAO‐56 crop coefficient method or
relative to a reference flooding level for submerged crops (e.g., rice). Here, the crop type is assumed to be con-
stant in time, and, therefore, cases where farmers may change crops between the seasons or years are not
accounted for. The demands are withdrawn from rivers, lakes, reservoirs, and/or groundwater within
and/or external to the subbasin where the demands originated. The demands are constrained by the water
availability in these sources. After subtraction of conveyance losses, the withdrawn water is applied as addi-
tional infiltration to the irrigated soils from which the demands originated.

The HYPE model setup for the pan‐European region (8.8 million km2), referred to as E‐HYPE v.3.0
(Hundecha et al., 2016), was employed allowing analysis of model outputs in 35,408 subbasins (215 km2

in average spatial resolution). Open global data sources were used to extract information on terrain, soil,
land use, lakes, reservoirs, and irrigation (Donnelly et al., 2016). Meteorological variables of mean daily pre-
cipitation and temperature are derived from the HydroGFD product v2.0 (Hydrological Global Forcing Data
version 2.0), which is an observation‐corrected reanalysis data set provided daily at a 0.5° gridded resolution
(Berg et al., 2018). HydroGFD is the reference data set and was used to drive the hydrological model for the
period 1991–2015 (hereafter referred to as “reference simulation”; the first 2 years were used to spin up the
model states). E‐HYPE was calibrated and evaluated against multiple variables (i.e., streamflow, evapotran-
spiration, snow, water quality) extracted by in situ observations and earth observations. For instance, the
performance of E‐HYPE in validation in terms of streamflow reaches a median Nash‐Sutcliffe Efficiency
of 0.53 over Europe. Details about the model performance and its relation to physiographic‐climatic charac-
teristics can be found in Hundecha et al. (2016). The modeled monthly means (1991–2015) for precipitation,
temperature, and streamflow can be found in Figures S1–S3 in the supporting information respectively.

2.2. Seasonal Meteorological Forecasts and Bias Adjustment

Seasonal predictions of daily mean precipitation and temperature were taken from the fifth generation sea-
sonal forecasting system of the European Centre for Medium‐Range Weather Forecasts, named SEAS5
(Johnson et al., 2019). The SEAS5 reforecasts (also known as hindcasts) used here consist of 25 ensemble
members available at a grid spacing of approximately 36 km. SEAS5 reforecasts are available for the period
1993–2015 and consist of 7‐month forecasts initialized at the beginning of each month.

The reforecast data were bias adjusted using a modified version of the Distribution Based Scaling (DBS)
method (Yang et al., 2010) to account for drifting. Using the data for the whole analysis period, the bias
adjustment parameters are conditioned on the lead month and the forecast issue date. DBS has originally
been developed to adjust biases in climate projections and is a quantile‐mapping method adapted here for
seasonal forecasting. Bias adjustment was conducted on all monthly initialized forecasts using the

10.1029/2019WR026987Water Resources Research

PECHLIVANIDIS ET AL. 3 of 19



HydroGFD data set as reference. After bias adjustment, the cumulative distribution of daily precipitation
and temperature forecasts follows closely the one of the HydroGFD data.

2.3. Seasonal Hydrological Forecasts—Evaluation

E‐HYPE runs with the bias‐adjusted SEAS5 reforecasts as forcing input, taking initial hydrological model
states (snow, water levels in reservoirs/lakes/wetlands, soil moisture, and streamflow) from the “reference
simulation.” In this paper, we extract E‐HYPE streamflow (m3/s) in 35,408 subbasins to assess the model's
predictive accuracy on seasonal timescales. Seasonal reforecasts are evaluated with respect to their perfor-
mance against the “reference simulation” (also known as “pseudo‐observations” or perfect forecast) per
initialization month and lead month. It is important to note that the comparison of modeled reforecasts to
modeled pseudo‐observations eventually leads to a theoretical, and not to the actual, accuracy. We do not
base the evaluation on real observations of streamflow, as their availability does not cover the entire hydro-
climatic gradient of the European river systems; streamflow time series are only available and quality
assured at 1,366 stations (see Kuentz et al., 2017). In addition, an evaluation in the modeled world is inde-
pendent from the hydrological model's imperfection. The evaluation of the reforecasts is performed on
monthly mean streamflow (i.e., daily streamflow averaged over a month) for the 1993–2015 period. Here,
the first month of the forecast (model just initialized) is referred to as Lead Month 0 (e.g., January 1993
streamflow for forecasts issued on 1 January 1993). The second month of the forecast is referred to as
Lead Month 1 (e.g., February 1993 streamflow for forecasts issued on 1 January 1993), etc.

In this paper, we assess the forecasts in terms of their accuracy (−), that is, the performance of the monthly
streamflow forecasts in comparison to modeled time series (named “pseudo‐observations” hereafter), which
are both expressed inm3/s. For this purpose, the Continuous Rank Probability Score (CRPS; Hersbach, 2000)
was calculated for each subbasin, target month and lead time. CRPS is defined as the integral of the squared
distance between the cumulative distribution of the forecast members and a step function for the “pseudo‐
observations.” The score is the average of this integral computed at each time step of the evaluation period.
We next standardized the CRPS score (CRPS′) by dividing it by the monthly mean of the “pseudo‐
observations” (MQ):

CRPS′¼1–CRPS=MQ:

While CRPS values (in m3/s) range between 0 and ∞ with 0 indicating a perfect forecast, CRPS´ values (−)
range between −∞ and 1 with 1 being the optimum. CRPS′ allows a clear categorization of its values into
(very) good/poor performances, and it is used to present results hereafter.

2.4. Seasonal Hydrological Forecasts—Identifying Key Controlling Drivers

To better understand the controls of the forecasting accuracy, we explore the spatial streamflow patterns
across the entire continent by analyzing the CRPS′ score in all 35,408 basins modeled by the E‐HYPE model
on every initialization month and lead month. We apply the classification and regression trees (CART)
method (Breiman et al., 1984) to identify regions of similar forecasting accuracy and their key controlling
drivers using the Statistics and Machine Learning Toolbox™ for MATLAB® (The MathWorks, 2019).
CART is a recursive‐partitioning algorithm that classifies the space defined by the input descriptors (i.e.,
physiographic, hydrological, and climatic) based on the output variable (e.g., CRPS′ score for Lead Month
2 and target month March). The “tree” consists of a series of nodes, where each node is a logical expression
based on a similarity metric in the input space (here the physiographic‐hydroclimatic descriptors). The
method also provides information on the probabilities of different output groups at each “leaf” node (see
a CART example in supporting information Figure S4a). We divided CRPS′ into five groups—bad (CRPS
′ ≤ 0.2), poor (0.2 < CRPS′ ≤ 0.4), medium (0.4 < CRPS′ ≤ 0.6), good (0.6 < CRPS′ ≤ 0.8), and very good
(CRPS′ > 0.8). A terminal “leaf” exists at the end of each branch of the “tree,” where the probability of
belonging to any of the five output groups can be inspected. Here, we summarize the basin descriptors into
climatic, topographic, human impacts, biases in forcing input, and hydrological similarity (Table 1). The
degree of regulation at each dam (DoR) was calculated by dividing the dam capacity with the mean annual
inflows to the dam. The dam capacity is provided by the Global Reservoir and Dam (GranD) database
(Lehner et al., 2011). DoR indicates the dam's capacity to store the runoff generated over a year, that is, if
DoR = 1, the dam can hold all runoff generated within 1 year, and if DoR = 0.5, the dam can hold half of
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the runoff generated within 1 year. The descriptors were also analyzed for interdependence, and highly
interdependent (correlation coefficient greater or smaller than +0.7 or −0.7 respectively; see Figure S5)
descriptors were omitted to avoid overfitting in the CART analysis (see Table 1).

We next calculate the descriptors' importance by summing changes in the probability of splitting on every
descriptor and dividing the sum by the number of branch nodes (Loh, 2011; The MathWorks, 2019). The
descriptor's importance is further normalized to range from 0 to 1 since the number of generated branch
nodes depends on the input space defined by the descriptors, and hence allowing an intercomparison
between months and lead months. In order to avoid the high dimensionality in the CART analysis, hydro-
logical signatures (i.e., a set of 15 statistics describing hydrological behavior and listed in Table 1) were firstly
clustered in groups receiving an identification number (named FlowID), which is further introduced in the
CART. The hydrological signatures were used to identify the dominant processes and to determine the tem-
poral characteristics (extremes and information at daily, seasonal, and annual timescales) of the streamflow
response (Sawicz et al., 2011; Westerberg & McMillan, 2015). A k‐means clustering approach within the
15‐dimension space (consisting of the 15 calculated hydrological signatures in Table 1) is applied to categor-
ize the subbasins based on their combined similarity in streamflow signatures. Through the mapping of the
spatial pattern one can gain insights into the similarities of basin functioning and further identify the domi-
nant streamflow generating processes for specific regions.

3. Results
3.1. Bias Adjustment of SEAS5 Forecasts

SEAS5 precipitation and temperature forecasts were bias adjusted for all initialization months and lead
months using HydroGFD as reference. These biases, that is, the average difference between the forecast

Table 1
Basin Descriptors Used in the CART Analysis

Type Name [reference] Abbreviation Unit

Climatology/forcing biases
(9 descriptors)

Precipitation Prec mm/month
Temperature Temp °C
Snow depth Snow cm/month
Actual evapotranspiration AET mm/month
Potential evapotranspiration PET mm/month
Dryness index PET/Prec —

Evaporative index AET/Prec —

Bias in precipitation BiasPrec %
Bias in temperature BiasTemp °C

Topography
(4)

Area Area km2

Elevation Elev m
Relief ratio Relief —

Slope Slope %
Human impact (1) Degree of regulation DoR %
Hydrological signatures
(15)

Mean annual specific runoff (Viglione et al., 2013) Qm mm/year
Normalized high streamflow (Viglione et al., 2013) q05 —

Normalized low streamflow (Viglione et al., 2013) q95 —

Normalized relatively low streamflow (Viglione et al., 2013) q70 —

Slope of streamflow duration curve (Viglione et al., 2013) mFDC %/%
Range of Pardé coefficient (Viglione et al., 2013) DPar —

Coefficient of variation (Donnelly et al., 2016) CV —

Flashiness (Donnelly et al., 2016) Flash —

Normalized peak distribution (Euser et al., 2013) PD —

Rising limb density (Euser et al., 2013) RLD —

Declining limb density (Euser et al., 2013) DLD —

Baseflow index (Kuentz et al., 2017) BFI —

Runoff coefficient (Kuentz et al., 2017) RC —

Streamflow elasticity (Sawicz et al., 2011) EQP —

High pulse count (Yadav et al., 2007) HPC —

Note. Descriptors in italic were omitted in the regression analysis due to strong correlation with other descriptors.
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ensemble and the HydroGFD, are not similar in terms of magnitude and spatial variability, while as expected
following bias adjustment, they are significantly reduced both for precipitation and temperature. Figure 1
shows large positive and negative biases in seasonal precipitation forecasts with sharp gradients between
regions, which coincide with regions of complex topography and coastal areas (e.g., Spain, the United
Kingdom, France, and southeastern Europe). In general, SEAS5 tends to overpredict precipitation in the
winter (rain and snowfall season) in northern Europe. SEAS5 also tends to overpredict precipitation in
northern Europe from the middle of spring till late summer. In most parts of Europe, temperature is under-
predicted by on average 1 and 2°C in all months and lead months; only in February is temperature overpre-
dicted by about 2°C in northeastern Europe (see Figure S6). Note also that Figures S1 and S2 present the
spatial variability of monthly mean precipitation and temperature, respectively, allowing an estimation of
the proportional biases before and after bias adjustment.

Despite the effectiveness of the DBS method, some biases unavoidably remain in the meteorological
forecasts (particularly in precipitation). Such remaining biases are the result of an assumed theoretical
distribution of daily data, which in general does not perfectly fit but rather tries to minimize the number
of parameters in the correction model. Such remaining biases are further propagated in the forecasting
production chain, and hence potentially affecting the hydrological forecast quality. For instance, most
remaining precipitation (positive) biases are located in southern Europe and the Mediterranean, and
generally in highly elevated regions. However, after the DBS bias adjustment only negligible bias remains
for temperature and the spatial pattern becomes essentially identical to the HydroGFD. These results
together with supporting information Figures S1–S3 provide supporting information of the monthly means
(1991–2015) for precipitation, temperature, and streamflow, respectively.

3.2. Forecast Evaluation of Seasonal Streamflow Volumes

Results of forecast quality across the European domain show that forecasts can adequately predict the
streamflow achieving high CRPS′ values, with the highest predictability roughly from April to August and
the lowest one generally in autumn and winter (Figure 2). This could be related to the relatively small
streamflow volumes occurring in the warm months (May–August) in comparison to autumn and winter.
In addition, temperature is more influential in summer and is easier to predict than precipitation. Overall,
in Lead Month 0 forecast quality can be described as very good (CRPS′ > 0.8; however, with the exception
of forecasts during autumn), while in the high leadmonths the forecast quality can only be described as good
(0.6 < CRPS′ ≤ 0.8).

Figure 3 shows the spatial variability of streamflow volumetric errors (described by CRPS′) for the winter
and summer seasons and for Lead Months 0, 2, and 4. Overall, hydrological forecast quality varies both geo-
graphically and seasonally with acceptable performance over the entire domain in Lead Month 0. High fore-
cast quality is generally shown in central and northern Europe, particularly in winter in the short lead
months, and in central and western Europe in summer. The hydrological response in the cold regions of
northern Europe is controlled by snow accumulation/melting processes, and hence, temperature forecasts
are expected to be an important driver controlling accuracy. The performance of hydrological forecasts is
higher in the summer months (May–July), in comparison to winter, during which snow melting controls
the basin response. Consequently, streamflow forecasts are influenced by accurately estimating the snow-
pack in the previous months. In addition, as expected, the forecasting performance deteriorates with
increased lead month, particularly in southern and eastern Europe. The hydrological response in these
regions is generally driven by rainfall since temperature is generally above freezing temperatures and snow
only occurs in highly elevated basins.

3.3. Understanding Processes and Predictability Along a Hydroclimatic Gradient
3.3.1. Hydrological Similarity and Dominant Processes
To identify river systems of similar hydrological behavior, 15 streamflow signatures from the E‐HYPE hydro-
logical model setup were categorized, resulting into 11 different clusters of different size and varying distri-
butions in the signatures (Figure 4; see also Figures S7 and S8). The following properties characterize the
clusters, which are presented (in terms of key streamflow signatures, geographical domains, and dominant
processes) in Table 2 and further supported by supporting information Figure S9.
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Basins in Clusters 1 (Poland and Denmark), 8 (located in central Europe), and 9 (Scandinavia and Russia)
experience large memory since they are mainly baseflow dominated. These basins have long recessions with
small annual variability and hence very little response to precipitation. In particular, large river channels

Figure 1. Biases in raw and bias‐adjusted precipitation forecasts for the winter and summer months and Lead Month 0.
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and water bodies dampen streamflow in basins of Cluster 1. Basins in
Cluster 2 are characterized by long recessions in their hydrological
response, yet the frequent precipitation events result in frequent peak
streamflows. These basins mainly lie in France, Germany, Sweden,
south Finland, and Russia. Streamflow regime in north‐central and
northwestern parts of Russia is driven by snow processes (i.e., snow-
melt during spring), while the presence of lakes and wetlands results
into dampening of streamflow (Cluster 3). High seasonality caused
by snow‐melting characterize basins in Clusters 4 and 5, which mostly
lie in highly elevated regions and/or cool continental climate.
Regulation for hydropower production during winter is also affecting
the streamflow regime in Cluster 4.

Basins in Cluster 6 are generally spread around Europe and are very
responsive to precipitation yet with long recessions. Basins in Cluster 7
lie in warm and temperate Mediterranean climate yet they are placed at
high altitudes while their streamflow regime is characterized by high
variability. Streamflow response is highly sensitive to precipitation (and
hence interannual variability is driven by precipitation climatology)
while evapotranspiration is low. Typical streamflow responses of
Mediterranean river systems characterize the basins in Cluster 10.
These systems are located at low elevations and experience low flows

and relatively low runoff coefficients due to high evapotranspiration. Finally, basins in Cluster 11 are located
in eastern Ukraine and southeastern Russia and are characterized by low runoff coefficient and relatively
high annual variability influenced by irrigation.
3.3.2. Linking Forecast Quality to Basin Descriptors
Results from the CART analysis lead to the identification of relationships (for each forecast month and lead
month) between predictive accuracy and physiographic‐hydrologic‐climatic descriptors and consequently to
the identification of the key controls, which affect the streamflow forecast quality. An example of the CART
tree results for target month December, and LeadMonth 2 is provided in supporting information Figure S4b.
We next group all CART results and present the ranking of the 10 descriptors for all months and for two lead
months (Figure 5). Overall, the descriptors' importance varies as a function of forecast month and lead
month, yet some seem to be well identified as key drivers. Results show that the dominant descriptors result-
ing in poor/good streamflow forecast quality are the basin hydrological behavior (described by FlowID),
temperature (Temp), precipitation (Prec), and evaporative index (AET/Prec). It is generally expected that
remaining biases in temperature can have a significant impact on the form of precipitation (rainfall or snow-
fall) and the processes (i.e., changing from (to) snow accumulation to (from) melting) during the cold
months. Here the remaining biases in temperature forecasts are negligible to observe an effect on the stream-
flow forecast quality. However, the remaining biases in precipitation forecasts (BiasPrec) are larger than for
temperature and consequently results show a relation to streamflow predictability. Here, we note that a
higher importance in BiasPrec could be identified if remaining biases were higher due to the application
of an “inappropriate” bias adjustment method. Note also that uncertainty/errors in streamflow volumes at
upstream locations are generally propagated further in the downstream basins of the modeling chain.
Such alternation in the processes occur in north Europe during April where the mean average temperature
is close to 0°C and hence small deviations (or biases) in the meteorological forecasts will affect the basin
response. Snow‐related processes commonly occurring in highly elevated regions result into a hydrological
regime, which is better forecasted in comparison to rain‐fed basins. This is the reason that the descriptors of
temperature (strongly correlated to snow), evaporative index, and elevation are emerging between March
and May.

The basin hydrological similarity (FlowID) seems to be a key descriptor with basins of similar streamflow
properties achieving similar predictive performance. There are processes in the river systems (i.e., routing
in lakes and lateral groundwater flow) that have higher memory in comparison to the phenomena occurring
in the atmosphere, and hence, it is expected that hydrological variables (i.e., streamflow, soil moisture) can
have higher predictability than meteorological variables (i.e., precipitation). However, the link between

Figure 2. Median forecasting quality (in terms of the CRPS′ score) as a
function of lead time and initialization month over the entire European
domain. Each colored curve corresponds to the hindcasts initialized in a
single month.
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Figure 3. Spatial variability of the forecast quality (in terms of the CRPS′ score) for different target months and lead months.
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meteorological and hydrological predictability is not linear, since the precipitation‐streamflow process is
also nonlinear, with different systems responding differently to the meteorological signal.

3.4. Relating Forecast Quality to Hydrological Processes

We next investigate the pattern of the CRPS′ score at sites of different hydrological regimes (clusters defined
by FlowID) aiming for a deep understanding of the main processes controlling seasonal forecasts of

Figure 4. (a) Spatial distribution of hydrologically similar (clusters) basins over Europe and (b) distribution of streamflow signatures in each cluster group. The
red lines represent the terciles (33rd and 66th) for each signature.
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streamflow volumes. Figure 6 shows the pattern of forecast quality as a function of forecast month and lead
month for eight case studies belonging to different hydrological clusters. The CRPS′ value remains high for
all lead months and months for Cases 1 and 2 (the Angermanälven and Torneälven Rivers) located in
Scandinavia. In these basins, snow is accumulated over the winter months and melted over the spring
(usually May–July), with this climatological pattern being well defined and adequately predicted in most
months. In April, the forecast quality drops in Scandinavia, where temperature is close to 0°C and hence
small deviations can erroneously result into snowfall or rainfall. It is important to note that the

Table 2
Summary of the Findings on Basin Classification (Key Streamflow Signatures, Geographical Domains, and Dominant Processes)

Cluster
group
(no. of
basins)

Streamflow signatures (FS) FS
low FS high Location Dominant hydrological process

1 (2,694) DPar, q05,
CV, Flash,
PD, RLD,
EQP, HPC

q95, q70, BFI Poland, Denmark Streamflow temporal characteristics are controlled by
baseflow and hydrographs are not very responsive to
precipitation due to dampening by large river
channels and water bodies. Some influence of
snowmelt‐driven streamflows.

2 (4,827) — DPar, DLD,
EQP

Basins lie at the temperate oceanic and temperate
continental climates (spread over Europe but mainly
in France, Germany, south Finland, Sweden and
Russia)

Streamflow responses, which are precipitation‐driven
and result into frequent peak streamflows, yet with
long recession.

3 (2,870) mFDC,
Flash, RLD,
DLD, HPC

DPar, q05, PD,
RC

Mainly north‐central and northwestern Russia High interannual variability, particularly variable
between the low and high streamflow segments.
Snow‐dominated streamflow regime with significant
snowmelt during spring. Dampening of streamflow
due to presence of lakes and wetlands and low
actual evapotranspiration.

4 (1,983) DPar, CV,
PD, BFI

Qm, mFDC,
Flash, DLD,
RC, HPC

Highly elevated regions in Norway, Alps, Iceland, Spain,
western Ireland and western UK

Regions receive high precipitation and are very
responsive. Occasionally flow is regulated for
hydropower production during winter (snow and ice
melt), but still with some tendency of spring
streamflow.

5 (3,798) q95, q70, BFI DPar, mFDC,
q05, CV,
Flash, PD,
EQP, HPC

Most lie at the cool continental (subarctic) climate
(mountainous areas of Norway, Sweden, Finland
and Russia) and temperate Mediterranean climate
(Portugal, Spain, Italy, Greece and Turkey).

Basins of a highly variable streamflow regime. Response
is sometimes driven by snow melting, but also
precipitation driven.

6 (3,906) DPar Qm, mFDC,
Flash, DLD,
EQP, HPC

Basins spread around Europe but mostly located in
southern and central Europe at the temperate conti-
nental climate and also south Scandinavia

Highly variable streamflow regime quickly responding
to precipitation, yet with long recessions.

7 (1,853) q95, q70, BFI Qm, mFDC,
Flash, RLD,
RC, EQP,

HPC

Most lie at the warm and temperate Mediterranean
climate (Spain, Italy, Albania, and Greece)

Elevated basins with high variability in the streamflow
regime. Precipitation results into flashy streamflow
responses, also due to low actual evapotranspiration,
which results to high runoff coefficients.

8 (4,450) DPar, q05,
CV, PD, RC,

EQP

q95, RLD,
q70, BFI

Mostly in central Europe at the temperate continental
climate

Hydrographs are baseflow dominated with sharp rising
limps. This corresponds to a small annual variability.

9 (3,658) q05, CV,
Flash, RLD,

HPC

q95, q70, BFI Mainly in Scandinavia and Russia, but also spread
around Europe

Highly baseflow dominated streamflow with very little
response to precipitation.

10
(2,55-
8)

Qm, q95,
Flash, q70,

RC

mFDC, CV Mostly in the Mediterranean countries (Portugal, Spain,
Greece and Turkey)

Basins (elevation about 300 m a.s.l) with very low
streamflows during the entire year, and relatively
low runoff coefficients.

11
(2,81-
1)

Qm, mFDC,
q95, DLD,

q70, BFI, RC,
EQP

DPar, q05,
CV, Flash, PD

Eastern Ukraine and southeastern Russia Basins with low runoff coefficient, yet they experience
relatively high annual variability, that is, fast
response to precipitation and fast hydrograph
recession. Streamflow could also be influenced by
human impacts (i.e., irrigation).

Note. A streamflow signature for the cluster group of interest is identified as high (low) when its median value exceeds (does not exceed) the upper (lower) tercile
set from all cluster groups as shown in Figure 4.
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Figure 5. Importance ranking of 10 descriptors (with 1 being the most important) that influence the hydrological forecast quality for all months (and “Total” as
the average of each descriptor's monthly importance) and in lead months: (a) 0 and (b) 2. Shades of gray indicate the ranking of each descriptor, while circle
diameters indicate the normalized descriptor's importance.

Figure 6. Quality of hydrological forecasts (in terms of CRPS′ score) for all months and lead months in eight basins of different hydrological regimes. Central
figure shows the degree of streamflow regulation based on the E‐HYPE model setup. DoR is shown for Basins 1 and 5, which have a degree of regulation
greater than 0%.
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Angermanälven basin is regulated for hydropower energy production, and hence, the signal of the seasonal
meteorological forecasts can be masked by the regulation scheme (having a constant or seasonal response
when water levels are above a threshold) and further affect the naturalized hydrological response. This con-
dition is applied to both the perfect model simulation and SEAS5 model forecasts that consequently results
to good predictions. The degree of regulation for Angermanälven is relatively small (DoR of 1.2); however,
the forecasting quality is generally higher than the unregulated Torneälven, which has similar climatology
and physiography, particularly at the high lead months.

Similarities are further shown at the Sites 3 and 4 (the Meuse and Seine Rivers, respectively). These
basins of high river memory due to, for instance, baseflow domination and/or long recessions in the
streamflow, show high forecast quality in almost all months and lead months. In addition, in the
Mediterranean, the patterns can vary depending on local conditions and human interventions (reservoir
regulation and irrigation). Case 5 (the Douro river) is generally characterized by low streamflow and
runoff coefficients due to high evapotranspiration rates. Reservoir regulation is affecting the basin's
response, which, although DoR is relatively small (0.43), in semiarid regions of low runoff coefficients
can influence streamflow forecast quality. The forecast quality varies depending on the month and lead
month for the relatively flashy Tanaro River (Case 6). The river's response is driven by precipitation and
experiences high variability in the hydrological regime. The CRPS′ score varies strongly for the
fast‐responding river system of low runoff coefficient and generally highly variable regime (Case 7).
In all seasons, the forecasting quality is generally acceptable in Lead Month 0, yet it (often rapidly)
decreases with increasing lead time. Finally, the forecast quality is high in the snow‐dominated
Northern Dvina river basin (Case 8), whose streamflow is also affected by the lakes and wetlands con-
trolling and dampening the seasonal peaks.

We next assess whether insights from the individual case studies can be regionalized to other locations
within Europe. We therefore explore the similarity of the forecast quality (in terms of the CRPS′ score)
within river systems of similar hydrological behavior (Figure 7). As expected, the distribution of the
CRPS′ values for the different clusters varies between the months. However, it is interesting to note that
the clusters with good (or bad) forecast quality in relation to the other clusters will always be the same
independently of the target month. This is due to the intraannual variability of the streamflow response
which consistently varies between the basins from the different clusters. Overall, there is a clear identi-
fication of the basins with high (or low) CRPS′ values. Basins in clusters 1 and 3 have the highest fore-
cast quality of streamflow volumes. Basins in those clusters are characterized by processes of high river
memory, for instance, high ranges of baseflow (Cluster 1) and presence of lakes and wetlands, which
delay and dampen the streamflow signal (see Table 2) and are thus driven by previous hydrological con-
ditions rather than meteorological forcing. Similar results are observed in Clusters 2, 8, and 9 that are
defined by high baseflow index and long recessions. CRPS′ reaches the lowest range of values in the
highly and immediately responsive basins that define Cluster 7. These basins are characterized by short
river memory with flashy response to the precipitation signal, high seasonal variability, and small base-
flow contribution. Flashy basins that belong to Cluster 11 also experience low CRPS′ values, particularly
in the months when precipitation occurs (autumn and winter). Moreover, forecast quality in the basins
of Clusters 4 and 5 is not adequate. These highly elevated basins also have very small baseflow contri-
bution and although they are not as flashy as Cluster 7, their streamflow distribution is characterized by
snow melting during spring. Similar insights are overall concluded for higher lead months; however,
since the forecast quality decreases as a function of lead month for generally all basins, the distinction
of forecast quality between clusters is not preserved as strongly as for Lead Month 0 (see Figure S10 for
Lead Month 2).

4. Discussion
4.1. Regionalization Over a Hydroclimatic Gradient

Here for the first time to our knowledge, an investigation demonstrates that the quality of seasonal stream-
flow forecasts can be clustered, and hence regionalized, based on a priori knowledge of the local hydrocli-
matic conditions. The insights are of high value to operational continental and global climate services and
to users/stakeholders that are dependent on seasonal water fluctuations. In particular, the identified key

10.1029/2019WR026987Water Resources Research

PECHLIVANIDIS ET AL. 13 of 19



drivers can be used as diagnostics that allow an a priori estimation of the performance of a forecasting
service. The insights also set a new scientific scope in seasonal hydrological driven by the genuine interest
in identifying additional drivers that can better diagnose the regionalization performance of the forecast
quality. Our results show that in general the seasonal streamflow forecast quality is very good at river
systems of generally long memory, that is, river systems that are snow dominated and/or experience long
recessions, or even systems with lakes and wetlands that dampen streamflow. However, the forecast
quality is not adequate in cold and semiarid climates with the river systems immediately responding to
the precipitation signal (short river memory). Note that these results are shown in river systems where the
biases in the meteorological forecasts are generally small. In regions where these biases are large (i.e., due
to the poor performance of the bias adjustment method), the hydrological forecasts are expected to be of
poor quality.

Figure 7. Distribution of streamflow forecast quality (in terms of the CRPS′ score) for Lead Month 0 in each cluster group and all target months.
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This investigation is conditioned to Europe's hydroclimatic gradient; however, we note that the European
conditions undoubtedly describe only a portion of the global hydroclimatic gradient. For instance, there
are river systems whose streamflow response is dependent on ice processes (i.e., the Himalayan Plateau),
and other systems whose response depends on large upstream floodplains (i.e., Niger River Delta; Aich
et al., 2016; Andersson et al., 2017; Pechlivanidis et al., 2016). This indicates that there can be hydrological
clusters that are not represented in this investigation, and hence might have an unexplored relationship to
the drivers used here. Although our investigation focuses on Europe, the methodology followed to identify
the key drivers is not limited to any continental scale, and a geographic extension of the investigation is sub-
ject to future research using existing global hydrological setups (Arheimer et al., 2019; Emerton et al., 2018).

4.2. Uncertainty in Seasonal Streamflow Forecasting

The quality of seasonal streamflow forecasts relies on a forecasting chain that includes at least seasonal
meteorological forcing, initialization of hydrological model states and a hydrologic model setup (Mazrooei
et al., 2015; Pechlivanidis et al., 2014). To improve the forecast quality and further the decision‐making, this
chain can be advanced by introducing additional components that allow assimilation of data to set the initial
model states (e.g., in situ/Earth observations of soil moisture and snow water equivalent; Draper &
Reichle, 2015; Griessinger et al., 2016; Liu et al., 2012; Musuuza et al., 2020), postprocessing of seasonal
meteorological forecasts (e.g., bias adjustment and model output statistics; Dobrynin et al., 2018;
Manzanas et al., 2019; Zhao et al., 2017), and postprocessing of hydrologic forecasts (e.g., conditioning to
local data; Lucatero et al., 2018; Madadgar et al., 2014; Wood & Schaake, 2008). Currently, forecast service
development is ad hoc with improvements made to single parts of the forecasting chain when and where
available, and with only very limited guidance on the relative importance of each component to the forecast-
ing chain performance (Arheimer et al., 2011; Sinha et al., 2014; Thiboult et al., 2016).

To date, only few investigations identified the dominant sources of predictability in seasonal hydrological
forecasting (i.e., the initial hydrological conditions and meteorological forcing) at the continental and global
scale; however, these only consider different forcing data, model setups, and benchmarking (Greuell
et al., 2019; Li et al., 2009; Shukla & Lettenmaier, 2011; Yossef et al., 2013, 2017; Zhang et al., 2017). The lack
of large‐sample studies across a variety of modeling settings at multiple spatiotemporal scales and under
changing environmental conditions has limited the understanding of how predictability evolves in space
and time. Sensitivity analysis methods have been used at place‐based investigations for seasonal streamflow
forecasting to (1) identify critical lead times after which the streamflow predictability mainly depends on the
meteorological forecasts (and less on initial conditions; Wood & Lettenmaier, 2008) and (2) quantify the
increase in hydrological predictability as a results of increasing the predictability in one of the dominant
sources (Arnal et al., 2017; Wood et al., 2016). Application of these methods at the continental/global scale
can better exploit our understanding of the sources of predictability in seasonal predictions supplying the
users/stakeholders with evidence to guide forecast developments.

Results here show that the streamflow forecast quality depends on the biases in the precipitation forecasts,
with large biases being capable of masking the potential of a streamflow forecasting service. Although the
existing bias adjustment methods can significantly remove biases in temperature, considerable biases could
remain in precipitation. However, note that the requirements in meteorological variables depend on the
hydrological models; for instance, wind speed, humidity, and solar radiation are being used in similar hydro-
logical model setups (Arheimer et al., 2019). Promising areas to improve the quality and utility of seasonal
meteorological forecasts include a mixture of longer hindcast data sets and improved bias adjustment meth-
ods, capable of for instance taking into account the joint variability of multiple variables (Clark et al., 2017;
Li et al., 2014). Moreover, model output statistics, which is a type of statistical postprocessing, can produce
more reliable seasonal forecasts than in typically available forecasts from climate prediction systems (Wood
& Schaake, 2008). In particular, model output statistics‐type methods have shown considerable advantages
over simple bias adjustment methods, that is, setting climatology‐like forecasts in the absence of seasonal
forecast skill at long lead times (Zhao et al., 2017).

Finally, the hydrological model (setup, data, structure, and parameters) is another source of uncertainty.
Here the analysis was conducted using pseudo‐observations as reference, which are not always comparable
to real observations, but provide complete information in the spatial and temporal domain. Nevertheless, the
assessment against pseudo‐observations reduced model errors from the analysis to the minimum, and
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hence, results can be attributed to the hydrological processes rather than to the model performance
(Bierkens and Van Beek, 2009; Crochemore et al., 2020; Van Dijk et al., 2013). In the case of real observa-
tions, small sensitivities (e.g., bias adjustment) would have been hard to detect. However, results would have
a direct meaning to users and stakeholders (Bruno Soares & Dessai, 2016; Buontempo et al., 2018); hence,
improving the hydrological model setup would be another path to improve the seasonal streamflow
forecasts.

5. Conclusions

Herein, we analyzed the seasonal forecasts of streamflow volumes over Europe from the E‐HYPE hydrolo-
gical model forced with bias‐adjusted European Centre for Medium‐Range Weather Forecasts SEAS5
meteorological forecasts. About 35,400 basins were investigated, which lie along a strong gradient in terms
of climatology, scale, and hydrological regime. We further linked the quality of the seasonal streamflow fore-
casts to a set of physiographic‐hydroclimatic descriptors and meteorological biases, which consequently
allowed the identification of the key drivers controlling the seasonal streamflow predictability. This investi-
gation sets a benchmark over which further methodologies and systems, beyond those used here, can be
tested to assess potential improvements in forecast predictability and its regionalization.

The main conclusions from this study are as follows:

1. SEAS5 meteorological forecasts have biases that need to be adjusted prior to their use in an impact
(hydrological) model. These biases are not similar in terms of magnitude and spatial variability; large
positive and negative biases in precipitation forecasts with sharp gradients between regions, which coin-
cide with regions of complex topography, and a general underestimation of temperature in most months
and lead months. Even when a bias adjustment methodology is applied, remaining biases still exist and
their magnitude depends on the variable of interest. Most remaining precipitation biases are located in
southern Europe and the Mediterranean and generally in highly elevated regions, while temperature
biases are negligible.

2. The European basins can be categorized into 11 clusters based on similarities in streamflow signatures
revealing dominating hydrological processes. The hydrological clusters vary spatially in terms of different
characteristics of the streamflow signal, that is, mean, variability, extremes, and seasonality. Overall,
dominant streamflow generation processes, including baseflow, dampening, human alterations, and cli-
mate, could explain the hydrological clustering across Europe. Also, in some regions, distinct patterns of
hydrological similarity could appear, for example, mountainous areas, warm Mediterranean region, and
central Europe.

3. The quality of the seasonal streamflow forecasts varies both geographically and seasonally, depends on
the initialization month, and deteriorates with increased lead months. The highest predictability over
Europe overall is shown from April to August, and the predictability decreases in autumn and winter.
High forecast quality is shown in central and northern Europe in winter in the short lead months, and
in central and western Europe in summer.

4. The quality of the seasonal streamflow forecasts is linked to physiographic and hydroclimatic descriptors,
while the descriptors' importance varies with initialization month and lead month. The hydrological
similarity, temperature, precipitation, evaporative index, and precipitation forecast biases are strongly
linked to the streamflow forecast quality. Seasonal streamflows can be well predicted in river systems
of generally long memory (due to snow‐related processes, dampening from lakes/wetlands, aquifer con-
tribution, and long recessions); however, the predictability is poor in cold and semiarid climates with the
river systems immediately responding to the precipitation signal (short river memory systems).
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